Albel Singh
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albel Singh.
Chemistry & Biology | 2012
Cristian Varela; Doris Rittmann; Albel Singh; Karin Krumbach; Kiranmai Bhatt; Lothar Eggeling; Gurdyal S. Besra; Apoorva Bhatt
Summary Mycolic acids are vital components of the cell wall of the tubercle bacillus Mycobacterium tuberculosis and are required for viability and virulence. While mycolic acid biosynthesis is studied extensively, components involved in mycolate transport remain unidentified. We investigated the role of large membrane proteins encoded by mmpL genes in mycolic acid transport in mycobacteria and the related corynebacteria. MmpL3 was found to be essential in mycobacteria and conditional depletion of MmpL3 in Mycobacterium smegmatis resulted in loss of cell wall mycolylation, and of the cell wall-associated glycolipid, trehalose dimycolate. In parallel, an accumulation of trehalose monomycolate (TMM) was observed, suggesting that mycolic acids were transported as TMM. In contrast to mycobacteria, we found redundancy in the role of two mmpL genes, in Corynebacterium glutamicum; a complete loss of trehalose-associated and cell wall bound corynomycolates was observed in an NCgl0228-NCgl2769 double mutant, but not in individual single mutants. Our studies highlight the role of mmpL genes in mycolic acid metabolism and identify potential new targets for anti-TB drug development.
Molecular Microbiology | 2008
Helen L. Birch; Luke J. Alderwick; Apoorva Bhatt; Doris Rittmann; Karin Krumbach; Albel Singh; Yu Bai; Todd L. Lowary; Lothar Eggeling; Gurdyal S. Besra
The cell wall mycolyl‐arabinogalactan–peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis and is the target of several antitubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt‐EmbA and Mt‐EmbB. A bioinformatics approach identified putative integral membrane proteins, MSMEG2785 in Mycobacterium smegmatis, Rv2673 in Mycobacterium tuberculosis and NCgl1822 in Corynebacterium glutamicum, with 10 predicted transmembrane domains and a glycosyltransferase motif (DDX), features that are common to the GT‐C superfamily of glycosyltransferases. Deletion of M. smegmatis MSMEG2785 resulted in altered growth and glycosyl linkage analysis revealed the absence of AG α(1→3)‐linked arabinofuranosyl (Araf) residues. Complementation of the M. smegmatis deletion mutant was fully restored to a wild‐type phenotype by MSMEG2785 and Rv2673, and as a result, we have now termed this previously uncharacterized open reading frame, arabinofuranosyltransferase C (aftC). Enzyme assays using the sugar donor β‐d‐arabinofuranosyl‐1‐monophosphoryl‐decaprenol (DPA) and a newly synthesized linear α(1→5)‐linked Ara5 neoglycolipid acceptor together with chemical identification of products formed, clearly identified AftC as a branching α(1→3) arabinofuranosyltransferase. This newly discovered glycosyltransferase sheds further light on the complexities of Mycobacterium cell wall biosynthesis, such as in M. tuberculosis and related species and represents a potential new drug target.
Journal of Biological Chemistry | 2010
Shazia Khan; Sathya Narayanan Nagarajan; Amit Parikh; Sharmishtha Samantaray; Albel Singh; Devanand Kumar; Apoorva Bhatt; Vinay Kumar Nandicoori
InhA, the primary target for the first line anti-tuberculosis drug isoniazid, is a key enzyme of the fatty-acid synthase II system involved in mycolic acid biosynthesis in Mycobacterium tuberculosis. In this study, we show that InhA is a substrate for mycobacterial serine/threonine protein kinases. Using a novel approach to validate phosphorylation of a substrate by multiple kinases in a surrogate host (Escherichia coli), we have demonstrated efficient phosphorylation of InhA by PknA, PknB, and PknH, and to a lower extent by PknF. Additionally, the sites targeted by PknA/PknB have been identified and shown to be predominantly located at the C terminus of InhA. Results demonstrate in vivo phosphorylation of InhA in mycobacteria and validate Thr-266 as one of the key sites of phosphorylation. Significantly, our studies reveal that the phosphorylation of InhA by kinases modulates its biochemical activity, with phosphorylation resulting in decreased enzymatic activity. Co-expression of kinase and InhA alters the growth dynamics of Mycobacterium smegmatis, suggesting that InhA phosphorylation in vivo is an important event in regulating its activity. An InhA-T266E mutant, which mimics constitutive phosphorylation, is unable to rescue an M. smegmatis conditional inhA gene replacement mutant, emphasizing the critical role of Thr-266 in mediating post-translational regulation of InhA activity. The involvement of various serine/threonine kinases in modulating the activity of a number of enzymes of the mycolic acid synthesis pathway, including InhA, accentuates the intricacies of mycobacterial signaling networks in parallel with the changing environment.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Helen L. Birch; Luke J. Alderwick; Ben J. Appelmelk; Janneke J. Maaskant; Apoorva Bhatt; Albel Singh; Jérôme Nigou; Lothar Eggeling; Jeroen Geurtsen; Gurdyal S. Besra
Maintenance of cell-wall integrity in Mycobacterium tuberculosis is essential and is the target of several antitubercular drugs. For example, ethambutol targets arabinogalactan and lipoarabinomannan (LAM) biosynthesis through the inhibition of several arabinofuranosyltransferases. Apart from their role in cell-wall integrity, mycobacterial LAMs also exhibit important immunomodulatory activities. Here we report the isolation and detailed structural characterization of a unique LAM molecule derived from Mycobacterium smegmatis deficient in the arabinofuranosyltransferase AftC (AftC-LAM). This mutant LAM expresses a severely truncated arabinan domain completely devoid of 3,5-Araf–branching residues, revealing an intrinsic involvement of AftC in the biosynthesis of LAM. Furthermore, we found that ethambutol efficiently inhibits biosynthesis of the AftC-LAM arabinan core, unambiguously demonstrating the involvement of the arabinofuranosyltransferase EmbC in early stages of LAM-arabinan biosynthesis. Finally, we demonstrate that AftC-LAM exhibits an enhanced proinflammatory activity, which is due to its ability to activate Toll-like receptor 2 (TLR2). Overall, our efforts further describe the mechanism of action of an important antitubercular drug, ethambutol, and demonstrate a role for specific arabinofuranosyltransferases in LAM biosynthesis. In addition, the availability of sufficient amounts of chemically defined wild-type and isogenic truncated LAMs paves the way for further investigations of the structure–function relationship of TLR2 activation by mycobacterial lipoglycans.
Nature microbiology | 2016
Jonathan A. G. Cox; Katherine A. Abrahams; Carlos Alemparte; Sonja Ghidelli-Disse; Joaquín Rullas; Iñigo Angulo-Barturen; Albel Singh; Sudagar S. Gurcha; Vijayashankar Nataraj; Stephen Bethell; Modesto J. Remuiñán; Lourdes Encinas; Peter J. Jervis; Nicholas Cammack; Apoorva Bhatt; Ulrich Kruse; Marcus Bantscheff; Klaus Fütterer; David Barros; Lluis Ballell; Gerard Drewes; Gurdyal S. Besra
Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors.
Chemistry & Biology | 2008
Apoorva Bhatt; Alistair K. Brown; Albel Singh; David E. Minnikin; Gurdyal S. Besra
Summary Mycolic acids are essential components of the mycobacterial cell wall. In this study, we show that a gene encoding a reductase involved in the final step of mycolic acid biosynthesis can be deleted in Mycobacterium smegmatis without affecting cell viability. Deletion of MSMEG4722 (ortholog of Mycobacterium tuberculosis Rv2509) altered culture characteristics and antibiotic sensitivity. The ΔMSMEG4722 strain synthesized α-alkyl, β-oxo intermediates of mycolic acids, which were found esterified to cell wall arabinogalactan. While the precursors could not be isolated directly due to their inherent instability during base treatment, their presence was established by prior reduction of the β-oxo group by sodium borohydride. Interestingly, the mutant also accumulated unsaturated ketones, similar to tuberculenone from M. tuberculosis, which were shunt products derived from spontaneous decarboxylation of α-alkyl, β-oxo fatty acid precursors of mycolic acids.
Molecular Microbiology | 2015
Vijayashankar Nataraj; Cristian Varela; Asma Javid; Albel Singh; Gurdyal S. Besra; Apoorva Bhatt
Mycolic acids are unique long chain fatty acids found in the lipid‐rich cell walls of mycobacteria including the tubercle bacillus Mycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M. tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti‐M. tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co‐ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity.
Journal of Bacteriology | 2011
Debasmita Sarkar; Mandeep Sidhu; Albel Singh; Jiemin Chen; David A. Lammas; Astrid M. van der Sar; Gurdyal S. Besra; Apoorva Bhatt
Deletion of Mycobacterium marinum MMAR2333 resulted in the loss of three of four subclasses of lipooligosaccharides (LOSs). The mutant was unable to extend an intermediate (LOS-II*) by addition of caryophyllose. These data and the predicted domain structure suggest that MMAR2333 is a glycosyltransferase involved in the generation of a lipid-linked caryophyllose donor.
PLOS ONE | 2012
Amrita K. Rana; Albel Singh; Sudagar S. Gurcha; Liam R. Cox; Apoorva Bhatt; Gurdyal S. Besra
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of lipoglycan synthesis for growth makes the glycosyltransferase that synthesizes PPM, a potential drug target in Mycobacterium tuberculosis, the causative agent of tuberculosis. In M. tuberculosis, PPM has been shown to be synthesized by Ppm1 in enzymatic assays. However, genetic evidence for its essentiality and in vivo role in LM/LAM and PPM biosynthesis is lacking. In this study, we demonstrate that MSMEG3859, a Mycobacterium smegmatis gene encoding the homologue of the catalytic domain of M. tuberculosis Ppm1, is essential for survival. Depletion of MSMEG3859 in a conditional mutant of M. smegmatis resulted in the loss of higher order phosphatidyl-myo-inositol mannosides (PIMs) and lipomannan. We were also able to demonstrate that two other M. tuberculosis genes encoding glycosyltransferases that either had been shown to possess PPM synthase activity (Rv3779), or were involved in synthesizing similar polyprenol-linked donors (ppgS), were unable to compensate for the loss of MSMEG3859 in the conditional mutant.
Microbiology | 2010
Rebecca C. Taylor; Alistair K. Brown; Albel Singh; Apoorva Bhatt; Gurdyal S. Besra
The lipid-rich cell wall of mycobacteria is essential not only for virulence but also for survival. Whilst anabolic pathways for mycobacterial lipid biosynthesis have been well studied, there has been little research looking into lipid catabolism. The genome of Mycobacterium tuberculosis encodes multiple enzymes with putative roles in the beta-oxidation of fatty acids. In this report we explore the functionality of FadB2, one of five M. tuberculosis homologues of a beta-hydroxybutyryl-CoA dehydrogenase, an enzyme that catalyses the third step in the beta-oxidation cycle. Purified M. tuberculosis FadB2 catalysed the in vitro NAD(+)-dependent dehydration of beta-hydroxybutyryl-CoA to acetoacetyl-CoA at pH 10. Mutation of the active-site serine-122 residue resulted in loss of enzyme activity, consistent with the function of FadB2 as a fatty acyl dehydrogenase involved in the beta-oxidation of fatty acids. Surprisingly, purified FadB2 also catalysed the reverse reaction, converting acetoacetyl-CoA to beta-hydroxybutyryl-CoA, albeit in a lower pH range of 5.5-6.5. Additionally, a null mutant of fadB2 was generated in Mycobacterium smegmatis. However, the mutant showed no significant differences from the wild-type strain with regard to lipid composition, utilization of different fatty acid carbon sources and tolerance to various stresses; the absence of any phenotype in the mutant strain could be due to the potential redundancy between the five M. smegmatis fadB paralogues.