Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert A. Presto is active.

Publication


Featured researches published by Albert A. Presto.


Physical Chemistry Chemical Physics | 2011

Adventures in ozoneland: down the rabbit-hole

Neil M. Donahue; Greg T. Drozd; Scott A. Epstein; Albert A. Presto; Jesse H. Kroll

In this perspective we describe a 15 year pursuit of the Stabilized Criegee Intermediate (SCI). We have conducted several complementary experiments to measure the pressure dependence of product yields-including OH radical and ozonides-on sequences of alkene + ozone systems. In so doing we have been able to bring into gradual focus a succession of weakly bound intermediates, starting with the primary ozonide, then the SCI, and finally a vinyl hydroperoxide (VHP) product of SCI rearrangement. We have narrowed the phase space in our hunt for direct SCI observations to a range of alkene carbon numbers and system pressures, but the system continues to deliver surprises. One surprise is strong evidence that the VHP is a significant bottleneck along the reaction coordinate. These findings support the search for the SCI, build our fundamental understanding of collisional energy transfer in highly excited, multiple-well, chemically activated systems, and finally directly inform atmospheric chemistry on topics including HO(x) radical formation and reactions associated with secondary organic aerosol formation.


Environmental Science & Technology | 2010

Secondary Organic Aerosol Formation from High-NOx Photo-Oxidation of Low Volatility Precursors: n-Alkanes

Albert A. Presto; Marissa A. Miracolo; Neil M. Donahue; Allen L. Robinson

Smog chamber experiments were conducted to investigate secondary organic aerosol (SOA) formation from photo-oxidation of low-volatility precursors; n-alkanes were chosen as a model system. The experiments feature atmospherically relevant organic aerosol concentrations (C(OA)). Under high-NO(x) conditions SOA yields increased with increasing carbon number (lower volatility) for n-decane, n-dodecane, n-pentadecane, and n-heptadecane, reaching a yield of 0.51 for heptadecane at a C(OA) of 15.4 microg m(-3). As with other photo-oxidation systems, aerosol yield increased with UV intensity. Due to the log-linear relationship between n-alkane carbon number and vapor pressure as well as a relatively consistent product distribution it was possible to develop an empirical parametrization for SOA yields for n-alkanes between C(12) and C(17). This parametrization was implemented using the volatility basis set framework and is designed for use in chemical transport models. For C(OA) < 2 microg m(-3), the SOA mass spectrum, as measured with an aerosol mass spectrometer, had a large contribution from m/z 44, indicative of highly oxygenated products. At higher C(OA), the mass spectrum was dominated by m/z 30, indicative of organic nitrates. The data support the conclusion that lower volatility organic vapors are important SOA precursors.


Platinum Metals Review | 2008

Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas

Albert A. Presto; Evan J. Granite

The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.The use of precious metals and platinum group metals as catalysts for oxidation of mercury in flue gas is an active area of study. To date, field studies have recently focused on gold and palladium catalysts installed at pilot-scale. In this work, we introduce bench-scale results for gold, platinum, and palladium catalysts tested in realistic simulated flue gas. Initial results reveal intriguing characteristics of catalytic mercury oxidation and provide insight for future research.


Environmental Science & Technology | 2012

Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes.

Daniel S. Tkacik; Albert A. Presto; Neil M. Donahue; Allen L. Robinson

Intermediate volatility organic compounds (IVOCs) are an important class of secondary organic aerosol (SOA) precursors that have not been traditionally included in chemical transport models. A challenge is that the vast majority of IVOCs cannot be speciated using traditional gas chromatography-based techniques; instead they are classified as an unresolved complex mixture (UCM) that is presumably made up of a complex mixture of branched and cyclic alkanes. To better understand SOA formation from IVOCs, a series of smog chamber experiments was conducted with different alkanes, including cyclic, branched, and linear compounds. The experiments focused on freshly formed SOA from hydroxyl (OH) radical-initiated reactions under high-NO(x) conditions at typical atmospheric organic aerosol concentrations (C(OA)). SOA yields from cyclic alkanes were comparable to yields from linear alkanes three to four carbons larger in size. For alkanes with equivalent carbon numbers, branched alkanes had the lowest SOA mass yields, ranging between 0.05 and 0.08 at a C(OA) of 15 μg m(-3). The SOA yield of branched alkanes also depends on the methyl branch position on the carbon backbone. High-resolution aerosol mass spectrometer data indicate that the SOA oxygen-to-carbon ratios were largely controlled by the carbon number of the precursor compound. Depending on the precursor size, the mass spectrum of SOA produced from IVOCs is similar to the semivolatile-oxygenated and hydrocarbon-like organic aerosol factors derived from ambient data. Using the new yield data, we estimated SOA formation potential from diesel exhaust and predict the contribution from UCM vapors to be nearly four times larger than the contribution from single-ring aromatics and comparable to that of polycyclic aromatic hydrocarbons after several hours of oxidation at typical atmospheric conditions. Therefore, SOA from IVOCs may be an important contributor to urban OA and should be included in SOA models; the yield data presented in this study are suitable for such use.


Environmental Science & Technology | 2010

Photo-Oxidation of Low-Volatility Organics Found in Motor Vehicle Emissions: Production and Chemical Evolution of Organic Aerosol Mass

Marissa A. Miracolo; Albert A. Presto; Andrew T. Lambe; Christopher J. Hennigan; Neil M. Donahue; Jesse H. Kroll; Douglas R. Worsnop; Allen L. Robinson

Recent research has proposed that low-volatility organic vapors are an important class of secondary organic aerosol (SOA) precursors. Mixtures of low-volatility organics were photo-oxidized in a smog chamber under low- and high-NO(x) conditions. Separate experiments addressed emission surrogates (diesel fuel and motor oil) and single components (n-pentacosane). Both diesel fuel and motor oil are major components of exhaust from diesel engines. Diesel fuel is a complex mixture of intermediate volatility organic compounds (IVOCs), whereas motor oil is a complex mixture of semivolatile organic compounds (SVOCs). IVOCs exist exclusively in the vapor phase, while SVOCs exist in both the aerosol and vapor phase. Oxidation of SVOC vapors (motor oil and n-pentacosane) creates substantial SOA, but this SOA is largely offset by evaporation of primary organic aerosol (POA). The net effect is a cycling or pumping of SVOCs between the gas and particle phases, which creates more oxygenated organic aerosol (OA) but little new OA mass. Since gas-phase reactions are much faster than heterogeneous ones, the processing of SVOC vapors likely contributes to the production of highly oxidized OA. The interplay between gas-particle partitioning and chemistry also blurs traditional definitions of POA and SOA. Photo-oxidation of diesel fuel (IVOCs) rapidly creates substantial new OA mass, similar to published aging experiments with dilute diesel exhaust. However, aerosol mass spectrometer (AMS) data indicated that the SOA formed from emission surrogates is less oxidized than either the oxygenated organic aerosol (OOA) measured in the atmosphere or SOA formed from the photo-oxidation of dilute diesel exhaust. Therefore, photo-oxidation of IVOCs helps explain the substantial SOA mass produced from aging diesel exhaust, but some component is missing from these emission surrogate experiments that leads to the rapid production of highly oxygenated SOA.


Environmental Science & Technology | 2013

Gas-Particle Partitioning of Primary Organic Aerosol Emissions: (2) Diesel Vehicles

Andrew A. May; Albert A. Presto; Christopher J. Hennigan; Ngoc T. Nguyen; Timothy D. Gordon; Allen L. Robinson

Experiments were performed to investigate the gas-particle partitioning of primary organic aerosol (POA) emissions from two medium-duty (MDDV) and three heavy-duty (HDDV) diesel vehicles. Each test was conducted on a chassis dynamometer with the entire exhaust sampled into a constant volume sampler (CVS). The vehicles were operated over a range of driving cycles (transient, high-speed, creep/idle) on different ultralow sulfur diesel fuels with varying aromatic content. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: artifact correction of quartz filter samples, dilution from the CVS into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry (TD-GC-MS) analysis of quartz filter samples. During tests of vehicles not equipped with diesel particulate filters (DPF), POA concentrations inside the CVS were a factor of 10 greater than ambient levels, which created large and systematic partitioning biases in the emissions data. For low-emitting DPF-equipped vehicles, as much as 90% of the POA collected on a quartz filter from the CVS were adsorbed vapors. Although the POA emission factors varied by more than an order of magnitude across the set of test vehicles, the measured gas-particle partitioning of all emissions can be predicted using a single volatility distribution derived from TD-GC-MS analysis of quartz filters. This distribution is designed to be applied directly to quartz filter data that are the basis for existing emissions inventories and chemical transport models that have implemented the volatility basis set approach.


Environmental Science & Technology | 2014

Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor

Daniel S. Tkacik; Andrew T. Lambe; Shantanu H. Jathar; Xiang Li; Albert A. Presto; Yunliang Zhao; D. R. Blake; Simone Meinardi; John T. Jayne; Philip Croteau; Allen L. Robinson

Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.


Environmental Science & Technology | 2013

Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

Timothy D. Gordon; Daniel S. Tkacik; Albert A. Presto; M. Zhang; Shantanu H. Jathar; Ngoc T. Nguyen; John Massetti; Tin Truong; Pablo Cicero-Fernandez; Christine Maddox; Paul Rieger; Sulekha Chattopadhyay; Hector Maldonado; M. Matti Maricq; Allen L. Robinson

Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.


Aerosol Science and Technology | 2012

Temperature Dependence of Gas–Particle Partitioning of Primary Organic Aerosol Emissions from a Small Diesel Engine

Manish Ranjan; Albert A. Presto; Andrew A. May; Allen L. Robinson

A new experimental technique has been developed to study the gas–particle partitioning behavior of primary organic aerosol (POA) emissions from combustion sources at atmospherically relevant concentrations. The technique involves slowly filling a Teflon chamber with a constant emission source. As aerosol concentrations increase inside the chamber, the gas–particle partitioning of semivolatile organics shifts to the particle phase, thus increasing the fuel-based POA emission factor. The technique allows characterization of partitioning under isothermal conditions and atmospherically relevant concentrations. The technique was evaluated using emissions from a small diesel engine; the measured changes in gas–particle partitioning agreed well with previously published data for this engine measured with a dilution sampler. The temperature dependence of the gas–particle partitioning was investigated by conducting experiments at three different temperatures (15°C, 26°C, and 33°C). Increasing organic aerosol concentration and decreasing temperature increased the fuel-based POA emission factor. The gas–particle partitioning data were fit using absorptive partitioning theory to determine the volatility distribution and enthalpy of vaporization (ΔH v) of the emissions. We have derived two fits; one using the volatility basis set approach and a second using a two-product model. Both fits are suitable for use in chemical transport models. These fits were tested using previously published thermodenuder data. Partitioning calculations predict that the gas–particle partitioning from POA emissions from this engine vary by about a factor of 4 across the atmospherically relevant range of temperature and organic aerosol concentrations. This underscores the semivolatile nature of POA emissions. Copyright 2012 American Association for Aerosol Research


Aerosol Science and Technology | 2012

Determination of Volatility Distributions of Primary Organic Aerosol Emissions from Internal Combustion Engines Using Thermal Desorption Gas Chromatography Mass Spectrometry

Albert A. Presto; Christopher J. Hennigan; Ngoc T. Nguyen; Allen L. Robinson

A new technique for measuring the primary organic aerosol (POA) emissions from internal combustion engines is presented. The method combines thermal-optical OC/EC analysis and thermal desorption gas chromatography mass spectrometry (TD-GC-MS) of quartz filter samples collected using a dilution sampler to quantify the total emissions of low-volatility organics and to distribute them across the volatility basis set. These data can be used in conjunction with partitioning theory to predict the gas-particle partitioning and thus the total amount of POA over the entire range of atmospheric conditions. The approach is evaluated using POA emissions data from two gas-turbine engines and one diesel generator. To evaluate the new method, we directly measured the effects of temperature and concentration on gas-particle partitioning of the emissions from each. Predictions based on the volatility distributions derived from the filter analyses are consistent with the direct partitioning measurements. The new approach represents a major improvement over the traditional assumption of nonvolatile POA emissions, which over predicts actual POA emissions from these sources by a factor of 2–4 at typical ambient concentration and temperature. By using quartz filter samples, this new technique is designed to be applied to routine source test data. Volatility distributions derived using this new approach can also be applied directly to the large catalog of quartz filter data used by existing emission inventories and models. The emissions data derived from this approach are designed for use in the next generation of chemical transport models and emissions inventories that employ the volatility basis set approach to explicitly track the gas-particle partitioning of POA emissions. Copyright 2012 American Association for Aerosol Research

Collaboration


Dive into the Albert A. Presto's collaboration.

Top Co-Authors

Avatar

Allen L. Robinson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Neil M. Donahue

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ngoc T. Nguyen

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. May

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Ellis S. Robinson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Eric M. Lipsky

Penn State Greater Allegheny

View shared research outputs
Top Co-Authors

Avatar

Evan J. Granite

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Tkacik

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge