Albert A. van Zeeland
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albert A. van Zeeland.
Molecular Cell | 2001
Marcel Volker; Martijn J. Moné; Parimal Karmakar; Anneke van Hoffen; Wouter Schul; Wim Vermeulen; Jan H.J. Hoeijmakers; Roel van Driel; Albert A. van Zeeland; Leon H.F. Mullenders
Here, we describe the assembly of the nucleotide excision repair (NER) complex in normal and repair-deficient (xeroderma pigmentosum) human cells, employing a novel technique of local UV irradiation combined with fluorescent antibody labeling. The damage recognition complex XPC-hHR23B appears to be essential for the recruitment of all subsequent NER factors in the preincision complex, including transcription repair factor TFIIH. XPA associates relatively late, is required for anchoring of ERCC1-XPF, and may be essential for activation of the endonuclease activity of XPG. These findings identify XPC as the earliest known NER factor in the reaction mechanism, give insight into the order of subsequent NER components, provide evidence for a dual role of XPA, and support a concept of sequential assembly of repair proteins at the site of the damage rather than a preassembled repairosome.
EMBO Reports | 2001
Martijn J. Moné; Marcel Volker; Osamu Nikaido; Leon H.F. Mullenders; Albert A. van Zeeland; Pernette J. Verschure; Erik M. M. Manders; Roel van Driel
UV‐induced DNA damage causes cells to repress RNA synthesis and to initiate nucleotide excision repair (NER). NER and transcription are intimately linked processes. Evidence has been presented that, in addition to damaged genes, undamaged loci are transcriptionally inhibited. We investigated whether RNA synthesis from undamaged genes is affected by the presence of UV damage elsewhere in the same nucleus, using a novel technique to UV irradiate only part of a nucleus. We show that the basal transcription/repair factor TFIIH is recruited to the damaged nuclear area, partially depleting the undamaged nuclear area. Remarkably, this sequestration has no effect on RNA synthesis. This result was obtained for cells that are able to carry out NER and for cells deficient in NER. We conclude that cross talk between NER and transcription occurs only over short distances in nuclei of living cells.
BMC Genomics | 2005
Marjan Boerma; Caroline Gc van der Wees; Harry Vrieling; J. Peter Svensson; J. Wondergem; Arnoud van der Laarse; Leon H.F. Mullenders; Albert A. van Zeeland
BackgroundDuring excessive pressure or volume overload, cardiac cells are subjected to increased mechanical stress (MS). We set out to investigate how the stress response of cardiac cells to MS can be compared to genotoxic stresses induced by DNA damaging agents. We chose for this purpose to use ionising radiation (IR), which during mediastinal radiotherapy can result in cardiac tissue remodelling and diminished heart function, and ultraviolet radiation (UV) that in contrast to IR induces high concentrations of DNA replication- and transcription-blocking lesions.ResultsCultures enriched for neonatal rat cardiac myocytes (CM) or fibroblasts were subjected to any one of the three stressors. Affymetrix microarrays, analysed with Linear Modelling on Probe Level, were used to determine gene expression patterns at 24 hours after (the start of) treatment. The numbers of differentially expressed genes after UV were considerably higher than after IR or MS. Remarkably, after all three stressors the predominant gene expression response in CM-enriched fractions was up-regulation, while in fibroblasts genes were more frequently down-regulated. To investigate the activation or repression of specific cellular pathways, genes present on the array were assigned to 25 groups, based on their biological function. As an example, in the group of cholesterol biosynthesis a significant proportion of genes was up-regulated in CM-enriched fractions after MS, but down-regulated after IR or UV.ConclusionGene expression responses after the types of cellular stress investigated (MS, IR or UV) have a high stressor and cell type specificity.
Mutation Research | 2001
Susan W.P. Wijnhoven; Hanneke J. M. Kool; Corrie M.M. van Teijlingen; Albert A. van Zeeland; Harry Vrieling
Loss of heterozygosity (LOH) of tumour suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Recently, we and others have developed mouse models in which the frequency and nature of LOH events at an autosomal locus can be elucidated in genetically stable normal somatic cells. In this paper, an overview is presented of recent studies in LOH-detecting mouse models. Molecular mechanisms that lead to LOH and the effects of genetic and environmental variables are discussed. The general finding that LOH of a marker gene occurs frequently in somatic cells of the mouse without deleterious effects on cell viability, suggests that also tumour suppressor genes are lost in similar frequencies. LOH of tumour suppressor genes may thus be an initiating event in cancer development.
Environmental and Molecular Mutagenesis | 1999
Harry Vrieling; Susan W.P. Wijnhoven; Petra P. H. Van Sloun; Hanneke Kool; Micheline Giphart-Gassler; Albert A. van Zeeland
During the development of cancer a series of specific genetic alterations have to occur in a stepwise fashion to transform a normal somatic cell into a malignant tumor cell. These genetic changes can be roughly divided in two groups: mutations in proto‐oncogenes that result in a constantly activated gene product and mutations in tumor‐suppressor genes that result in loss of function. While oncogenic mutations often have a dominant phenotype and mutation of one allele is sufficient for activation, in general both alleles of a tumor suppressor gene have to be disrupted to abolish its function. The requested specificity for activating mutations in proto‐oncogenes is high, since only a limited number of mutations at specific sites result in an activated protein. In contrast, disruption of a tumor suppressor gene can be accomplished via various mechanisms. Familial cancers often contain a germline mutation in one allele of a tumor suppressor gene. In tumors, the second allele is then frequently lost by genetic alterations that also affect the heterozygous state of multiple loci adjacent to the tumor suppressor gene. Genetic events especially, such as mitotic recombination, chromosome loss and deletion, are frequently responsible for the loss of the functional allele of heterozygous mutant tumor suppressor genes. We generated an Aprt+/− mouse model that allows us to study in detail the nature of the alterations that lead to loss of the wild‐type Aprt allele in somatic cells. These genetic changes are thought to be analogous to those occurring at autosomal tumour suppressor genes, where they may contribute to the development of cancer. Furthermore, this mouse model allows determination of the extent and mechanisms by which chemical carcinogens induce loss of heterozygosity and identification of the nature of the DNA adducts responsible. Environ. Mol. Mutagen. 34:84–89, 1999
Mutation Research | 2001
Susan W.P. Wijnhoven; Hanneke J. M. Kool; Corrie M.M. van Teijlingen; Albert A. van Zeeland; Harry Vrieling
Loss of heterozygosity (LOH) of tumour suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Recently, we and others have developed mouse models in which the frequency and nature of LOH events at an autosomal locus can be elucidated in genetically stable normal somatic cells. In this paper, an overview is presented of recent studies in LOH-detecting mouse models. Molecular mechanisms that lead to LOH and the effects of genetic and environmental variables are discussed. The general finding that LOH of a marker gene occurs frequently in somatic cells of the mouse without deleterious effects on cell viability, suggests that also tumour suppressor genes are lost in similar frequencies. LOH of tumour suppressor genes may thus be an initiating event in cancer development.
Photochemistry and Photobiology | 2012
Patricia Cramers; Alfred Ronald Filon; Alex Pines; Jos Kleinjans; Leon H.F. Mullenders; Albert A. van Zeeland
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre‐exposure to X‐rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV‐induced NER is augmented by pre‐exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X‐ray specific stabilization of p53 is unclear as both X‐rays and UV stabilize p53.
Mutation Research | 2008
Albert A. van Zeeland; Anton J.L. de Groot; Georges R. Mohn; Harry van Steeg; Conny T. M. van Oostrom; Annemarie van Duijn-Goedhart; Leon F.H. Mullenders; Jacob G. Jansen
Estimates of genotoxic effects of mutagens at low and protracted doses are often based on linear extrapolation of data obtained at relatively high doses. To test the validity of such an approach, a comparison was made between the mutagenicity of N-methyl-N-nitrosourea (MNU) in T-lymphocytes of the rat following two treatment protocols, i.e. sub-chronic exposure to a low dose (15-45 repeated exposures to 1mg/kg of MNU) or acute exposure to a single high dose (15, 30 or 45 mg/kg of MNU). Mutation induction appeared dramatically lower following sub-chronic treatment compared to treatment with a single high exposure. Furthermore, DNA sequence analysis of the coding region of the hprt gene in MNU-induced mutants showed that acute high dose treatment causes mainly GC-->AT base pair changes, whereas sub-chronic treatment results in a significant contribution of AT base pair changes to mutation induction. We hypothesize that O(6)-methylguanine-DNA methyltransferase is saturated after acute treatments, while after sub-chronic treatment most O(6)-methylguanine is efficiently repaired. These data suggest (i) that risk estimations at low and protracted doses of MNU on the basis of linear extrapolation of effects measured at high dose are too high and (ii) that the protective effects of DNA repair processes are relatively strong at low sub-chronic exposure.
Mutation Research | 2009
Maaike P.G. Vreeswijk; Caro M. Meijers; Micheline Giphart-Gassler; Harry Vrieling; Albert A. van Zeeland; Leon H.F. Mullenders; Wil A. M. Loenen
Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4 PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C>T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.
Mutation Research-dna Repair | 2001
Albert A. van Zeeland; Leon H.F. Mullenders; Harry Vrieling
The field of DNA repair has been expanded enormously in the last 20 years. In this paper, work on gene and sequence specificity of DNA damage induction and repair is summarized in the light of the large and broad contribution of Phil Hanawalt to this field of research. Furthermore, the consequences of DNA damage and repair for mutation induction is discussed, and the contribution of Paul Lohman to the development of assays employing transgenic mice for the detection of gene mutations is highlighted.