Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Bae is active.

Publication


Featured researches published by Albert Bae.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Cellular memory in eukaryotic chemotaxis

Monica Skoge; Haicen Yue; Michael Erickstad; Albert Bae; Herbert Levine; Alex Groisman; William F. Loomis; Wouter-Jan Rappel

Significance Chemotaxis—the directed motion of cells in response to chemical cues—plays an important role in many biological processes. A well-known example is the migration of Dictyostelium cells to the source of traveling waves of chemoattractant during aggregation. A classic problem is how cells chemotax toward the wave source, even though the spatial gradient reverses direction in the back of the wave. To address this problem, we use microfluidics to expose cells to traveling waves with varying period, as well as rapid gradient switches. Our results reconcile the observed persistent motion in waves with the high sensitivity of cells to static gradients and suggest that chemotaxis to dynamic cues involves a coupling between adaptive directional sensing and bistable cellular memory. Natural chemical gradients to which cells respond chemotactically are often dynamic, with both spatial and temporal components. A primary example is the social amoeba Dictyostelium, which migrates to the source of traveling waves of chemoattractant as part of a self-organized aggregation process. Despite its physiological importance, little is known about how cells migrate directionally in response to traveling waves. The classic back-of-the-wave problem is how cells chemotax toward the wave source, even though the spatial gradient reverses direction in the back of the wave. Here, we address this problem by using microfluidics to expose cells to traveling waves of chemoattractant with varying periods. We find that cells exhibit memory and maintain directed motion toward the wave source in the back of the wave for the natural period of 6 min, but increasingly reverse direction for longer wave periods. Further insights into cellular memory are provided by experiments quantifying cell motion and localization of a directional-sensing marker after rapid gradient switches. The results can be explained by a model that couples adaptive directional sensing to bistable cellular memory. Our study shows how spatiotemporal cues can guide cell migration over large distances.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

Christian Westendorf; Jose Negrete Jr.; Albert Bae; Rabea Sandmann; Eberhard Bodenschatz; Carsten Beta

The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments.


PLOS ONE | 2012

A stochastic description of Dictyostelium chemotaxis.

Gabriel Amselem; Matthias Theves; Albert Bae; Eberhard Bodenschatz; Carsten Beta

Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes. Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium discoideum, a model organism for eukaryotic chemotaxis. A large number of cell trajectories in stationary, linear chemoattractant gradients is measured, using microfluidic tools in combination with automated cell tracking. We describe the directional motion as the interplay between deterministic and stochastic contributions based on a Langevin equation. The functional form of this equation is directly extracted from experimental data by angle-resolved conditional averages. It contains quadratic deterministic damping and multiplicative noise. In the presence of an external gradient, the deterministic part shows a clear angular dependence that takes the form of a force pointing in gradient direction. With increasing gradient steepness, this force passes through a maximum that coincides with maxima in both speed and directionality of the cells. The stochastic part, on the other hand, does not depend on the orientation of the directional cue and remains independent of the gradient magnitude. Numerical simulations of our probabilistic model yield quantitative agreement with the experimental distribution functions. Thus our model captures well the dynamics of chemotactic cells and can serve to quantify differences and similarities of different chemotactic eukaryotes. Finally, on the basis of our model, we can characterize the heterogeneity within a population of chemotactic cells.


Lab on a Chip | 2009

Rapid switching of chemical signals in microfluidic devices

Albert Bae; Carsten Beta; Eberhard Bodenschatz

We present an analysis of concentration switching times in microfluidic devices. The limits of rapid switching are analyzed based on the theory of dispersion by Taylor and Aris and compared to both experiments and numerical simulations. We focus on switching times obtained by photo-activation of caged compounds in a micro-flow (flow photolysis). The performance of flow photolysis is compared to other switching techniques. A flow chart is provided to facilitate the application of our theoretical analysis to microfluidic switching devices.


Proceedings of the National Academy of Sciences of the United States of America | 2010

On the swimming of Dictyostelium amoebae

Albert Bae; Eberhard Bodenschatz

The conventional mode for amoeboid locomotion is crawling. Barry and Bretscher (1) recently showed that Dictyostelium amoebae are also capable of swimming to chemoattractants. They hypothesized that the mechanism for swimming is intimately related to crawling. When crawling, the cell front bifurcates, and protrusions move backward, relative to the cell. The authors (1) conjecture that floating cells executing these same motions will swim. In this letter, we show that, indeed, the shape changes of a crawling cell are sufficient for swimming.


PLOS ONE | 2016

A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells

Monica Skoge; Elisabeth Wong; Bashar Hamza; Albert Bae; Joseph M. Martel; Rama Kataria; Ineke Keizer-Gunnink; Arjan Kortholt; Peter J.M. van Haastert; Guillaume Charras; Chris Janetopoulos; Daniel Irimia

Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events.


PLOS ONE | 2014

Cell Substratum Adhesion during Early Development of Dictyostelium discoideum

Marco Tarantola; Albert Bae; Danny Fuller; Eberhard Bodenschatz; Wouter-Jan Rappel; William F. Loomis

Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.


Pmc Biophysics | 2010

Live cell flattening — traditional and novel approaches

Christian Westendorf; Albert Bae; Christoph Erlenkämper; Edouard Galland; Carl Franck; Eberhard Bodenschatz; Carsten Beta

Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field (BF) to total internal reflection fluorescence (TIRF) microscopy. Fundamental processes, such as mitosis and in vivo actin polymerization, have been investigated using these techniques. Here, we review the well known agar overlayer protocol and the oil overlay method. In addition, we present more elaborate microfluidics-based techniques that provide us with a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method. PACS Codes: 87.64.-t, 47.61.-k, 87.80.Ek


PLOS ONE | 2018

Influence of fast advective flows on pattern formation of Dictyostelium discoideum.

Torsten Eckstein; Estefania Vidal-Henriquez; Albert Bae; Vladimir S. Zykov; Eberhard Bodenschatz; Azam Gholami

We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat.


bioRxiv | 2017

The cooperation of the haves and the have-nots

Eberhard Bodenschatz; Albert Bae; Kaumudi Prabhakara

Upon starvation, Dictyostelium discoideum (D.d.) exhibit social behavior mediated by the chemical messenger cyclic adenosine monophosphate (cAMP). Large scale cAMP waves synchronize the population of starving cells and enable them to aggregate and form a multi-cellular organism. Here, we explore the effect of cell-to-cell variability in the production of cAMP on aggregation. We create a mixture of extreme cell-to-cell variability by mixing a few cells that produce cAMP (haves) with a majority of mutants that cannot produce cAMP (have-nots). Surprisingly, such mixtures aggregate, although each population on its own cannot aggregate. We show that (1) a lack of divalent ions kills the haves at low densities and (2) the have-nots supply the cAMP degrading enzyme, phosphodiesterase, which, in the presence of divalent ions, enables the mixture to aggregate. Our results suggest that a range of degradation rates induces optimal aggregation. The haves and the have-nots cooperate by sharing complementary resources.

Collaboration


Dive into the Albert Bae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wui Ip

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge