Albert Breier
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albert Breier.
Current Cancer Drug Targets | 2005
Albert Breier; Miroslav Barancik; Zdenka Sulová; Branislav Uhrík
Multidrug resistance (MDR) of neoplastic tissues is a major obstacle in cancer chemotherapy. The predominant cause of MDR is the overexpression and drug transport activity of P-glycoprotein (P-gp, a product of the MDR gene). P-gp is a member of the ATP binding cassette (ABC) transporters family, with broad substrate specificity for several substances including anticancer drugs, linear and cyclic peptides, inhibitors of HIV protease, and several other substances. The development of P-gp-mediated MDR is often associated with several changes in cell structure and metabolism of resistant cells. In the present review are discussed the relations between glucosylceramide synthase activity, Pregnane X receptor and development of P-gp mediated MDR phenotype. Attention is also focused on the changes in protein kinase systems (mitogen-activated protein kinases, protein kinase C, Akt kinase) that are associated with the development of MDR phenotype and to the possible role of these kinase cascades in modulation of P-gp expression and function. The overexpression of P-gp may be associated with changes in metabolism of sugars as well as energy production. Structural and ultrastructural characteristics of multidrug resistant cells expressing P-gp are typical for cells engaged in a metabolically demanding process of protein synthesis and transport. P-gp mediated MDR phenotype is often also associated with alterations in cytoskeletal elements, microtubule and mitochondria distribution, Golgi apparatus, chromatin texture, vacuoles and caveolae formation. The current review also aims at bringing some state-of-the-art information on interactions of P-glycoprotein with various substances. To capture and transport the numerous unrelated substances, P-gp should contain site(s) able to bind compounds with a molecular weight of several hundreds and comprising hydrophobic and/or base regions that are protonated under physiological conditions. Drug binding sites that are able to recognize substances with different chemical structures may have a complex architecture in which different parts are responsible for binding of different drugs. For P-gp substrates and inhibitors, a pharmacophore-based model has been described. The pharmacophores have to contain parts with hydrophobic and aromatic characteristics and functional groups that can act as hydrogen-bond donors and/or acceptors. Several drugs are known to be P-glycoprotein antagonizing agents. They represent a large group of structurally unrelated substances that can act via direct interaction with P-gp and inhibition of its transport activity, or via possible modulation of processes (such as phosphorylation) regulating P-gp transport activity. Effects of MDR reversal agents on the P-gp expression have also been reported. Function and expression of P-gp can be affected indirectly as well, e.g. through cyclooxygenase-2 or carbonic anhydrase-IX expression and effects.
European Journal of Pharmaceutical Sciences | 2001
Miroslav Barancik; Vierka Boháčová; Janka Kvačkajová; S. Hudecova; Ol’ga Križanová; Albert Breier
P-glycoprotein (P-gp) is the plasma membrane transport pump responsible for efflux of chemotherapeutic agents from cells and is one of the systems that secures multidrug resistance (MDR) of neoplastic cells. In the present study, drug sensitive L1210 and multidrug resistant L1210/VCR (characterized by overexpression of P-gp) mouse leukemic cell lines were used as an experimental model. We have found that SB203580, a specific inhibitor of p38-MAPK pathway, significantly reduced the degree of the vincristine resistance in L1210/VCR cells. This phenomenon was accompanied by a decrease in the LC(50) value of vincristine from 3.203+/-0.521 to 0.557+/-0.082 microM. The LC(50) value of sensitive cells for vincristine was about 0.011 microM. The effect of SB203580 on L1210/VCR cells was associated with significantly increased intracellular accumulation of [3H]-vincristine in the concentration dependent manner. Prolonged exposure of resistant cells to 30 microM SB203580 did neither significantly influence the gene expression of P-gp, nor change the protein levels of p38-MAPK. Western blot analysis revealed that the MDR phenotype in L1210/VCR cells was associated with increased level and activity of cytosolic p38-MAPK. In resistant cells, the enhanced phosphorylation of both, p38-MAPK and ATF-2 (endogenous substrate for p38-MAPK) was found as well. In conclusion we could remark that SB203580, an inhibitor of p38 kinase pathway, reversed the MDR resistance of L1210/VCR cells. MDR phenotype of these cells is connected with increased levels and activities of p38-MAPK. These findings point to the possible involvement of the p38-MAPK pathway in the modulation of P-gp mediated multidrug resistance in the L1210/VCR mouse leukemic cell line. However, the mechanisms of SB203580 action should be further investigated.
Anti-cancer Agents in Medicinal Chemistry | 2012
Albert Breier; Lenka Gibalová; Mário Šereš; Miroslav Barancik; Zdenka Sulová
Multidrug resistance (MDR) of cancer tissue is a phenomenon in which cancer cells exhibit reduced sensitivity to a large group of unrelated drugs with different mechanisms of pharmacological activity. Mechanisms that reduce cell sensitivity to damage induced by a variety of chemicals were found to be caused by diverse, albeit well-defined, phenotypic alterations. The molecular basis of MDR commonly involves overexpression of the plasma membrane drug efflux pump - P-glycoprotein (P-gp). This glycoprotein is an ABCB1 member of the ABC transporter family. Cells that develop MDR of this type express massive amounts of P-gp that can induce a drug resistance of more than 100 times higher than normal cells to several drugs, which are substrates of P-gp. Expression of P-gp could be inherent to cancer cells with regard to the specialized tissues from which the cells originated. This is often designated as intrinsic Pgp- mediated MDR. However, overexpression of P-gp may be induced by selection and/or adaptation of cells during exposure to anticancer drugs; this particular example is known as acquired P-gp-mediated MDR. Drugs that are potential inducers of P-gp are often substrates of this transporter. However, several substances that have been proven to not be transportable by P-gp (such as cisplatin or alltrans retinoic acid) could induce minor improvements in P-gp overexpression. It is generally accepted that the drug efflux activity of Pgp is a major cause of reduced cell sensitivity to several compounds. However, P-gp may have side effects that are independent of its drug efflux activity. Several authors have described a direct influence of P-gp on the function of proteins involved in regulatory pathways, including apoptotic progression (such as p53, caspase-3 and Pokemon). Moreover, alterations of cell regulatory pathways, including protein expression, glycosylation and phosphorylation, have been demonstrated in cells overexpressing P-gp, which may consequently induce changes in cell sensitivity to substances that are not P-gp substrates or modulators. We recently reported that P-gppositive L1210 cells exhibit reduced sensitivity to cisplatin, concanavalin A, thapsigargin and tunicamycin. Thus, P-gp-mediated MDR represents a more complex process than was expected, and the unintended effects of P-gp overexpression should be considered when describing this phenotype. The present review aims to provide the most current informations about P-gp-mediated MDR while paying particular attention to the possible dual function of this protein as a drug efflux pump and a regulatory protein that influences diverse cell processes. From a clinical standpoint, overexpression of P-gp in cancer cells represents a real obstacle to effective chemotherapy for malignant diseases. Therefore, this protein should be considered as a viable target for pharmaceutical design.
Molecular and Cellular Biochemistry | 1997
Attila Ziegelhöffer; Tanya Ravingerova; Ján Styk; Jana šeboková; Iveta Waczulíková; Albert Breier; Andrej Džurba; Katarina Volkovova; Jozef Čársky; L. Turecký
In diabetes the hearts exhibit impaired membrane functions, but also increased tolerance to Ca2+ (iCaT) However, neither the true meaning nor the molecular mechanisms of these changes are fully understood. The present study is devoted to elucidation of molecular alterations, particularly those induced by non-enzymatic glycation of proteins, that may be responsible for iCaT of the rat hearts in the stage of fully developed, but still compensated diabetic cardiomyopathy (DH). Insulin-dependent diabetes (DIA) was induced by a single i.v. dose of streptozotocin (45 mg.kg-1). Beginning with the subsequent day, animals obtained 6 U insulin daily. Glucose, triglycerides, cholesterol and glycohemoglobin were investigated in blood. ATPase activities, the kinetics of activation of (Na,K)-ATPase by Na+ and K+, further the fluorescence anisotropy of diphenyl-hexatriene as well as the order parameters of membranes in isolated heart sarcolemma (SL) were also investigated. In addition, the degree of glycation and glycation-related potency for radical generation in SL proteins were determined by investigating their fructosamine content. In order to study calcium tolerance of DH in a ‘transparent’ model, hearts were subjected to calcium paradox (Ca-Pa, 3 min of Ca2+ depletion; 10 min of Ca2+ repletion). In this model of Ca2+-overload, Ca2+ ions enter the cardiac cells in a way that is not mediated by receptors. Results revealed that more than 83% of the isolated perfused DH recovered, while the non-DIA control hearts all failed after Ca-Pa. DH exhibited well preserved SL ATPase activities and kinetics of (Na,K)-ATPase activation by Na+, even after the Ca-Pa. This was considered as a reason for their iCaT. Pretreatment and administration of resorcylidene aminoguanidine (RAG 4 or 8 mg.kg-1) during the disease prevented partially the pathobiochemical effects of DIA-induced glycation of SL proteins. DIA-induced perturbations in anisotropy and order parameters of SL were completely prevented by administration of RAG (4 mg.kg-1). Although, the latter treatment exerted little influence on the (Na,K)-ATPase activity, it decreased the calcium tolerance of the DH. Results are supporting our hypothesis that the glycation-induced enhancement in free radical formation and protein crosslinking in SL may participate in adaptive mechanisms that may be also considered as ‘positive’ and are responsible for iCaT of the DH. (Mol Cell Biochem 176: 191–198, 1997)
Toxicology in Vitro | 2012
Lenka Gibalová; Mário Šereš; Andrej Rusnak; Peter Ditte; Martina Labudova; Branislav Uhrík; Jaromir Pastorek; Sedlák J; Albert Breier; Zdenka Sulová
Multidrug resistance (MDR) is a phenomenon in which cells become resistant to cytostatic drugs and other substances with diverse chemical structures and cytotoxicity mechanisms. The most often observed molecular mechanism for MDR includes high levels of P-glycoprotein (P-gp)--an ABCB1 member of the ABC drug transporter family. Overexpression of P-gp in neoplastic tissue is an obstacle to chemotherapeutic treatment. Herein, we were focused on differences in apoptosis induced by cisplatin (no substrate for P-gp) between P-gp-positive and P-gp-negative L1210 cells. P-gp-positive cells were obtained by either L1210 cell adaptation to vincristine (R) or L1210 cell transfection with the human gene for P-gp (T) and compared with parental L1210 cells (S). R and T cells were more resistant to CisPt than S cells. R and T cell resistance to CisPt-induced apoptosis could not be reversed by verapamil (a well-known P-gp inhibitor), which excludes P-gp transport activity as a cause of CisPt resistance. CisPt induced a more pronounced entry into apoptosis in S than R and T cells, which was measured using the annexin-V/propidium iodide apoptosis kit. CisPt induced more pronounced caspase-3 activation in S than R and T cells. CisPt did not induce changes in the P-gp protein level for R and T cells. While similar levels of Bax and Bcl-2 proteins were observed in P-gp-negative and P-gp-positive cells, CisPt induced a more significant decrease in Bcl-2 levels for S cells than P-gp-positive cells. Expression of p53 and its molecular chaperone Hsp90 were more pronounced in R and T than S cells. Moreover, CisPt enhanced the upregulation of p53 and Hsp90 in R and T cells to a higher degree than S cells. Apoptosis was shown to be the prevalent mode of cell death in S, R and T cells by the typical DNA fragmentation and cell ultrastructure changes. All of the above findings indicate that P-gp, independent of its drug efflux activity, induced changes in cell regulatory pathways that confer a partial loss of cisplatin sensitivity.
International Journal of Molecular Sciences | 2011
Mário Šereš; Dana Cholujova; Tatiana Bubenčíkova; Albert Breier; Zdenka Sulová
P-glycoprotein (P-gp), also known as ABCB1, is a member of the ABC transporter family of proteins. P-gp is an ATP-dependent drug efflux pump that is localized to the plasma membrane of mammalian cells and confers multidrug resistance in neoplastic cells. P-gp is a 140-kDa polypeptide that is glycosylated to a final molecular weight of 170 kDa. Our experimental model used two variants of L1210 cells in which overexpression of P-gp was achieved: either by adaptation of parental cells (S) to vincristine (R) or by transfection with the human gene encoding P-gp (T). R and T cells were found to differ from S cells in transglycosylation reactions in our recent studies. The effects of tunicamycin on glycosylation, drug efflux activity and cellular localization of P-gp in R and T cells were examined in the present study. Treatment with tunicamycin caused less concentration-dependent cellular damage to R and T cells compared with S cells. Tunicamycin inhibited P-gp N-glycosylation in both of the P-gp-positive cells. However, tunicamycin treatment did not alter either the P-gp cellular localization to the plasma membrane or the P-gp transport activity. The present paper brings evidence that independently on the mode of P-gp expression (selection with drugs or transfection with a gene encoding P-gp) in L1210 cells, tunicamycin induces inhibition of N-glycosylation of this protein, without altering its function as plasma membrane drug efflux pump.
Pflügers Archiv: European Journal of Physiology | 1995
Tania Stankovičová; Hana Zemkova; Albert Breier; Evžen Amler; Martin Burkhard; František Vyskočil
The effects of 10 mM Ca2+ and Ca2+ channel blockers verapamil, diltiazem and flunarizine on the ouabain-sensitive electrogenic Na+, K+ pump activity of mouse diaphragm muscle fibres enriched with Na+ were compared with the changes in cytosolic [Ca2+]. The electrogenic Na+ pump activity produced by adding K+ to muscles previously bathed for 4 h in a K+-free, 2-mM [Ca2+] solution increased the resting membrane potential by about 18 mV. This hyperpolarization was completely inhibited after 10 min incubation in 10 mM Ca2+. Verapamil 10−5M, 10−5M diltiazem and 10−7 M flunarizine effectively prevented the effect of elevated [Ca2+]. At these concentrations, these drugs did not affect the K+-induced hyperpolarization. In mouse diaphragm, the basal cytosolic [Ca2+] measured by the fluorescent indicator 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]2-(2′-amino 5′-methylphenoxy) ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (fura-2/AM) was 261±6 nM. After 4 h in a Liley K+-free, 2 mM [Ca2+] solution, the cytosolic [Ca2+] increased to 314±28 nM. Increase in [Ca2+] from 2 to 10 mM caused a twofold increase of cytosolic [Ca2+] to 637±26 nM. This rise was, like the Ca2+-induced inhibition of electrogenic pump, prevented by 10−5 M verapamil, 10−5M diltiazem and 10−7 M flunarizine. The results suggest that substances which block Ca2+ entry into the cell prevent the Ca2+ induced inhibition of the Na+ pump.
Journal of Proteome Research | 2009
Zdenka Sulová; Danica Mislovičová; Lenka Gibalová; Zuzana Vajčnerová; Eva Poláková; Branislav Uhrík; Lucia Tylková; Annamária Kovárová; Sedlák J; Albert Breier
Multidrug resistance of murine leukemic cell line L1210/VCR (R), obtained by adaptation of parental L1210 cells (S) on vincristine, is associated with overexpression of P glycoprotein (P-gp, the ATP-dependent drug efflux pump). Previously, we found that cytochemical staining of negatively charged cell surface binding sites (probably sialic acid) by ruthenium red (RR) revealed a compact layer of RR bound to the external coat of S cells. This is in contrast to R cells and L1210/VCR cells cultured in the presence of vincristine during the last cultivation prior to the experiment (V cells), where the RR layer was either reduced or absent. In the current paper, we observed differences in the interactions of S, R and V cells with Concanavalin A (ConA) and tomato lectin (lycopersicum esculentum agglutinin, LEA). ConA bound and induced cell damage more effectively in S cells than in R or V cells. Both of these effects could be prevented by methyl-manopyranose, but not by N-acetylglucosamine. In contrast, LEA lectin preferentially bound to R and V cells. While LEA agglutinated cells more effectively than ConA, it did not cause cell damage comparable to ConA. Binding of LEA to the cell surface could be prevented by chitooligosaccharides. Both LEA and ConA failed to identify P-gp in lectin blots. Thus, changes in ConA and LEA interactions are not caused by massive expression of P-gp in the plasma membrane and the consequent exposure of the inner saccharides to the external side of the plasma membrane.Taken together, the above facts suggest that S cells differ from R and V cells in the composition of cell surface glycosides not directly linked to P-gp.
Journal of Chromatography B: Biomedical Sciences and Applications | 1998
V. Boháčová; Peter Dočolomanský; Albert Breier; Peter Gemeiner; Attila Ziegelhöffer
Anthraquinone dyes (ADs), originally developed for the textile industry, are useful nucleotide-specific ligands for the purification of proteins by affinity techniques. Their specific feature is to mimic the adenine nucleotides ATP, ADP, NAD, NADH, which enables them to interact with the nucleotide-binding sites of enzymes such as dehydrogenases, kinases and ATPases. In the present study, the interactions and/or inhibitory effects of seven ADs, including Cibacron Blue F3G-A, Remazol Brilliant Blue R, on the activity of lactate dehydrogenase (LDH) were investigated. The ADs used in this paper could be divided into two groups: (i) AD1-AD3 which do not contain a triazine moiety; (ii) AD4-AD7 which contain the triazine moiety. Enzyme kinetics and zonal affinity chromatography were used for the characterization of the interaction affinity between the dye and LDH. Enzyme kinetic measurements were carried out at three different pH values: 6.5, 7.5 and 8.5. The relationship between physical and chemical properties of ADs (e.g., acid-basic properties, three dimensional structure of the respective dyes) and their interaction efficiency with LDH was studied. LDH activity was inhibited by all ADs, excluding AD1 (precursor of the blue dyes) and inhibition was always competitive. Similarity in the mutual position of the acidic and basic groups in NADH and the respective AD molecule was found to be a crucial factor for influencing the inhibitory action of the substance. The existence of ADs in the protonated form should be considered as another factor, important for the ADs inhibitory action on this enzyme.
Enzyme and Microbial Technology | 1988
Danica Mislovičová; Peter Gemeiner; Albert Breier
Abstract Dissociation constants and the character of interaction of immobilized anthraquinone dyes with lactate dehydrogenase (LDH) have been investigated with the aid of zonal affinity chromatography and batch adsorption. When processed by means of the time-concentration model, the data from adsorption experiments with LDH revealed that, contrary to adsorption onto Cibacron Blue (CB)-cellulose beads (found to be near to biospecific), the adsorption of enzyme onto Remazol Blue (RB)-cellulose beads could be characterized rather as a hydrophobic one. The missing biospecificity in the interaction of LDH with RB-cellulose beads was confirmed by the absence of any competition for the enzyme between the immobilized dye and NADH applied as a mobile ligand in conditions of zonal chromatography. On the other hand, in the case of CB-cellulose beads, NADH or CB-dextran conjugate applied separately as mobile ligands were found capable of competing for one binding site of tetrameric LDH. The strength of interaction of LDH with conjugate exceeded significantly the strength of interaction observed with NADH. This enables us to conclude that using CB-dextran conjugate the additional nonspecific binding interactions are considerably suppressed. It is reasonable to suppose that CB-dextran may represent a more powerful mobile ligand for dye-ligand chromatography than NADH, particularly in preparative scale.