Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Cardona is active.

Publication


Featured researches published by Albert Cardona.


Nature Methods | 2012

Fiji: an open-source platform for biological-image analysis

Johannes Schindelin; Ignacio Arganda-Carreras; Erwin Frise; Verena Kaynig; Mark Longair; Tobias Pietzsch; Stephan Preibisch; Curtis T. Rueden; Stephan Saalfeld; Benjamin Schmid; Jean-Yves Tinevez; Daniel James White; Volker Hartenstein; Kevin W. Eliceiri; Pavel Tomancak; Albert Cardona

Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.


PLOS ONE | 2012

TrakEM2 software for neural circuit reconstruction.

Albert Cardona; Stephan Saalfeld; Johannes Schindelin; Ignacio Arganda-Carreras; Stephan Preibisch; Mark Longair; Pavel Tomancak; Volker Hartenstein; Rodney J. Douglas

A key challenge in neuroscience is the expeditious reconstruction of neuronal circuits. For model systems such as Drosophila and C. elegans, the limiting step is no longer the acquisition of imagery but the extraction of the circuit from images. For this purpose, we designed a software application, TrakEM2, that addresses the systematic reconstruction of neuronal circuits from large electron microscopical and optical image volumes. We address the challenges of image volume composition from individual, deformed images; of the reconstruction of neuronal arbors and annotation of synapses with fast manual and semi-automatic methods; and the management of large collections of both images and annotations. The output is a neural circuit of 3d arbors and synapses, encoded in NeuroML and other formats, ready for analysis.


BMC Bioinformatics | 2010

A high-level 3D visualization API for Java and ImageJ

Benjamin Schmid; Johannes Schindelin; Albert Cardona; Mark Longair; Martin Heisenberg

BackgroundCurrent imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set.ResultsHere we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts.ConclusionsOur framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.


PLOS Biology | 2010

An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy.

Albert Cardona; Stephan Saalfeld; Stephan Preibisch; Benjamin Schmid; Anchi Cheng; J Pulokas; Pavel Tomancak; Volker Hartenstein

The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile.


Bioinformatics | 2009

CATMAID: collaborative annotation toolkit for massive amounts of image data.

Stephan Saalfeld; Albert Cardona; Volker Hartenstein; Pavel Tomancak

Summary: High-resolution, three-dimensional (3D) imaging of large biological specimens generates massive image datasets that are difficult to navigate, annotate and share effectively. Inspired by online mapping applications like GoogleMaps™, we developed a decentralized web interface that allows seamless navigation of arbitrarily large image stacks. Our interface provides means for online, collaborative annotation of the biological image data and seamless sharing of regions of interest by bookmarking. The CATMAID interface enables synchronized navigation through multiple registered datasets even at vastly different scales such as in comparisons between optical and electron microscopy. Availability: http://fly.mpi-cbg.de/catmaid Contact: [email protected]


Nature Methods | 2012

Elastic volume reconstruction from series of ultra-thin microscopy sections

Stephan Saalfeld; Richard D. Fetter; Albert Cardona; Pavel Tomancak

Anatomy of large biological specimens is often reconstructed from serially sectioned volumes imaged by high-resolution microscopy. We developed a method to reassemble a continuous volume from such large section series that explicitly minimizes artificial deformation by applying a global elastic constraint. We demonstrate our method on a series of transmission electron microscopy sections covering the entire 558-cell Caenorhabditis elegans embryo and a segment of the Drosophila melanogaster larval ventral nerve cord.


Nature | 2015

A multilevel multimodal circuit enhances action selection in Drosophila

Tomoko Ohyama; Casey M Schneider-Mizell; Richard D. Fetter; Javier Valdes Aleman; Romain Franconville; Marta Rivera-Alba; Brett D. Mensh; Kristin Branson; Julie H. Simpson; James W. Truman; Albert Cardona; Marta Zlatic

Natural events present multiple types of sensory cues, each detected by a specialized sensory modality. Combining information from several modalities is essential for the selection of appropriate actions. Key to understanding multimodal computations is determining the structural patterns of multimodal convergence and how these patterns contribute to behaviour. Modalities could converge early, late or at multiple levels in the sensory processing hierarchy. Here we show that combining mechanosensory and nociceptive cues synergistically enhances the selection of the fastest mode of escape locomotion in Drosophila larvae. In an electron microscopy volume that spans the entire insect nervous system, we reconstructed the multisensory circuit supporting the synergy, spanning multiple levels of the sensory processing hierarchy. The wiring diagram revealed a complex multilevel multimodal convergence architecture. Using behavioural and physiological studies, we identified functionally connected circuit nodes that trigger the fastest locomotor mode, and others that facilitate it, and we provide evidence that multiple levels of multimodal integration contribute to escape mode selection. We propose that the multilevel multimodal convergence architecture may be a general feature of multisensory circuits enabling complex input–output functions and selective tuning to ecologically relevant combinations of cues.


Bioinformatics | 2010

As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets

Stephan Saalfeld; Albert Cardona; Volker Hartenstein; Pavel Tomancak

Motivation: Tiled serial section Transmission Electron Microscopy (ssTEM) is increasingly used to describe high-resolution anatomy of large biological specimens. In particular in neurobiology, TEM is indispensable for analysis of synaptic connectivity in the brain. Registration of ssTEM image mosaics has to recover the 3D continuity and geometrical properties of the specimen in presence of various distortions that are applied to the tissue during sectioning, staining and imaging. These include staining artifacts, mechanical deformation, missing sections and the fact that structures may appear dissimilar in consecutive sections. Results: We developed a fully automatic, non-rigid but as-rigid-as-possible registration method for large tiled serial section microscopy stacks. We use the Scale Invariant Feature Transform (SIFT) to identify corresponding landmarks within and across sections and globally optimize the pose of all tiles in terms of least square displacement of these landmark correspondences. We evaluate the precision of the approach using an artificially generated dataset designed to mimic the properties of TEM data. We demonstrate the performance of our method by registering an ssTEM dataset of the first instar larval brain of Drosophila melanogaster consisting of 6885 images. Availability: This method is implemented as part of the open source software TrakEM2 (http://www.ini.uzh.ch/∼acardona/trakem2.html) and distributed through the Fiji project (http://pacific.mpi-cbg.de). Contact: [email protected]


Developmental Dynamics | 2008

Dynamics of zebrafish somitogenesis.

Christian Schröter; Leah Herrgen; Albert Cardona; Gary J. Brouhard; Benjamin Feldman; Andrew C. Oates

Vertebrate somitogenesis is a rhythmically repeated morphogenetic process. The dependence of somitogenesis dynamics on axial position and temperature has not been investigated systematically in any species. Here we use multiple embryo time‐lapse imaging to precisely estimate somitogenesis period and somite length under various conditions in the zebrafish embryo. Somites form at a constant period along the trunk, but the period gradually increases in the tail. Somite length varies along the axis in a stereotypical manner, with tail somites decreasing in size. Therefore, our measurements prompt important modifications to the steady‐state Clock and Wavefront model: somitogenesis period, somite length, and wavefront velocity all change with axial position. Finally, we show that somitogenesis period changes more than threefold across the standard developmental temperature range, whereas the axial somite length distribution is temperature invariant. This finding indicates that the temperature‐induced change in somitogenesis period exactly compensates for altered axial growth. Developmental Dynamics 237:545–553, 2008.


Bioinformatics | 2017

Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification

Ignacio Arganda-Carreras; Verena Kaynig; Curtis T. Rueden; Kevin W. Eliceiri; Johannes Schindelin; Albert Cardona; H. Sebastian Seung

Summary: State‐of‐the‐art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time‐consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user‐designed image features or classifiers. Availability and Implementation: TWS is distributed as open‐source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Albert Cardona's collaboration.

Top Co-Authors

Avatar

Richard D. Fetter

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Truman

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casey M Schneider-Mizell

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Marta Zlatic

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge