Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert de la Chapelle is active.

Publication


Featured researches published by Albert de la Chapelle.


Cell | 1993

Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer

Fredrick S. Leach; Nicholas C. Nicolaides; Nickolas Papadopoulos; Bo Liu; Jin Jen; Ramon Parsons; Päivi Peltomäki; Pertti Sistonen; Lauri A. Aaltonen; Minna Nyström-Lahti; Xin Yuan Guan; Ji Zhang; Paul S. Meltzer; Jing Wei Yu; Fa Ten Kao; David J. Chen; Karen M. Cerosaletti; R. E. Keith Fournier; Sean Todd; Tracey Lewis; Robin J. Leach; Susan L. Naylor; Jean Weissenbach; Jukka Pekka Mecklin; Heikki Järvinen; Gloria M. Petersen; Stanley R. Hamilton; Jane Green; Jeremy R. Jass; Patrice Watson

Recent studies have shown that a locus responsible for hereditary nonpolyposis colorectal cancer (HNPCC) is on chromosome 2p and that tumors developing in these patients contain alterations in microsatellite sequences (RER+ phenotype). We have used chromosome microdissection to obtain highly polymorphic markers from chromosome 2p16. These and other markers were ordered in a panel of somatic cell hybrids and used to define a 0.8 Mb interval containing the HNPCC locus. Candidate genes were then mapped, and one was found to lie within the 0.8 Mb interval. We identified this candidate by virtue of its homology to mutS mismatch repair genes. cDNA clones were obtained and the sequence used to detect germline mutations, including those producing termination codons, in HNPCC kindreds. Somatic as well as germline mutations of the gene were identified in RER+ tumor cells. This mutS homolog is therefore likely to be responsible for HNPCC.


Cell | 1993

Hypermutability and mismatch repair deficiency in RER+ tumor cells

Ramon Parsons; Guo Min Li; Matthew J. Longley; Woei-horng Fang; Nickolas Papadopoulos; Jin Jen; Albert de la Chapelle; Kenneth W. Kinzler; Bert Vogelstein; Paul Modrich

A subset of sporadic colorectal tumors and most tumors developing in hereditary nonpolyposis colorectal cancer patients display frequent alterations in microsatellite sequences. Such tumors have been thought to manifest replication errors (RER+), but the basis for the alterations has remained conjectural. We demonstrate that the mutation rate of (CA)n repeats in RER+ tumor cells is at least 100-fold that in RER- tumor cells and show by in vitro assay that increased mutability of RER+ cells is associated with a profound defect in strand-specific mismatch repair. This deficiency was observed with microsatellite heteroduplexes as well as with heteroduplexes containing single base-base mismatches and affected an early step in the repair pathway. Thus, a true mutator phenotype exists in a subset of tumor cells, the responsible defect is likely to cause transitions and transversions in addition to microsatellite alterations, and a biochemical basis for this phenotype has been identified.


Cell | 1995

Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure

Kristiina Aittomäki; JoséLuis Dieguez Lucena; Pirjo Pakarinen; Pertti Sistonen; Juha S. Tapanainen; Jörg Gromoll; Riitta Kaskikari; Eeva-Marja Sankila; Heikki Lehväslaiho; Armando Reyes Engel; Eberhard Nieschlag; Ilpo Huhtaniemi; Albert de la Chapelle

Hypergonadotropic ovarian dysgenesis (ODG) with normal karyotype is a heterogeneous condition that in some cases displays Mendelian recessive inheritance. By systematically searching for linkage in multiplex affected families, we mapped a locus for ODG to chromosome 2p. As the previously cloned follicle-stimulating hormone receptor (FSHR) gene had been assigned to 2p, we searched it for mutations. A C566T transition in exon 7 of FSHR predicting an Ala to Val substitution at residue 189 in the extracellular ligand-binding domain segregated perfectly with the disease phenotype. Expression of the gene in transfected cells demonstrated a dramatic reduction of binding capacity and signal transduction, but apparently normal ligand-binding affinity of the mutated receptor. We conclude that the mutation causes ODG in these families.


Cell | 1994

The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping

Johanna Hästbacka; Albert de la Chapelle; Melanie M. Mahtani; Greg Clines; Mary Pat Reeve-Daly; Mark J. Daly; Bruce A. Hamilton; Kenro Kusumi; Bijal Trivedi; Alix Weaver; Antonio Coloma; Michael Lovett; Alan J. Buckler; Ilkka Kaitila; Eric S. Lander

Diastrophic dysplasia (DTD) is a well-characterized autosomal recessive osteochondrodysplasia with clinical features including dwarfism, spinal deformation, and specific joint abnormalities. The disease occurs in most populations, but is particularly prevalent in Finland owing to an apparent founder effect. DTD maps to distal chromosome 5q and, based on linkage disequilibrium studies in the Finnish population, we had previously predicted that the DTD gene should lie about 64 kb away from the CSF1R locus. Here, we report the positional cloning of the DTD gene by fine-structure linkage disequilibrium mapping. The gene lies in the predicted location, approximately 70 kb proximal to CSF1R, and encodes a novel sulfate transporter. Impaired function of its product is likely to lead to undersulfation of proteoglycans in cartilage matrix and thereby to cause the clinical phenotype of the disease. These results demonstrate the power of linkage disequilibrium mapping in isolated populations for positional cloning.


Nature Genetics | 1996

X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein.

Juha Kere; Anand Srivastava; Outi Montonen; Jonathan Zonana; Nicholas Stuart Tudor Thomas; Betsy Ferguson; Felix Munoz; Delyth Morgan; Angus John Clarke; Primo Baybayan; Ellson Y. Chen; Sini Ezer; Ulpu Saarialho-Kere; Albert de la Chapelle; David Schlessinger

Ectodermal dysplasias comprise over 150 syndromes of unknown pathogenesis. X–linked anhidrotic ectodermal dysplasia (EDA) is characterized by abnormal hair, teeth and sweat glands. We now describe the positional cloning of the gene mutated in EDA. Two exons, separated by a 200–kilobase intron, encode a predicted 135–residue transmembrane protein. The gene is disrupted in six patients with X;autosome translocations or submicroscopic deletions; nine patients had point mutations. The gene is expressed in keratinocytes, hair follicles, and sweat glands, and in other adult and fetal tissues. The predicted EDA protein may belong to a novel class with a role in epithelial–mesenchymal signalling.


Science | 1996

Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1)

Len A. Pennacchio; Anna-Elina Lehesjoki; Nancy E. Stone; Virginia L. Willour; Kimmo Virtaneva; Jinmin Miao; Elena D'Amato; Lucia Ramirez; Malek Faham; Marjaleena Koskiniemi; Janet A. Warrington; Reijo Norio; Albert de la Chapelle; David R. Cox; Richard M. Myers

Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1) is an autosomal recessive inherited form of epilepsy, previously linked to human chromosome 21q22.3. The gene encoding cystatin B was shown to be localized to this region, and levels of messenger RNA encoded by this gene were found to be decreased in cells from affected individuals. Two mutations, a 3′ splice site mutation and a stop codon mutation, were identified in the gene encoding cystatin B in EPM1 patients but were not present in unaffected individuals. These results provide evidence that mutations in the gene encoding cystatin B are responsible for the primary defect in patients with EPM1.


Human Genetics | 1981

A deletion in chromosome 22 can cause DiGeorge syndrome.

Albert de la Chapelle; Riitta Herva; Maila Koivisto; Pertti Aula

SummaryAn association between DiGeorges syndrome and an unbalanced chromosomal rearrangement leading to trisomy 20pter→20q11 and monosomy 22pter→22q11 was found in four individuals belonging to one family. These and other data from the literature are interpreted to suggest that DiGeorges syndrome can be caused by deletion of a gene located in chromosome 22, probably in band 22q11.


American Journal of Pathology | 2000

Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers.

Shannon Kuismanen; Mari T. Holmberg; Reijo Salovaara; Albert de la Chapelle; Päivi Peltomäki

Microsatellite instability (MSI) is a hallmark of hereditary nonpolyposis colorectal cancer, and in these patients, results from inherited defects in DNA mismatch repair genes, mostly MSH2 and MLH1. MSI also occurs in 15% of sporadic colorectal cancers, but in these tumors, its basis is less well characterized. We investigated 46 sporadic MSI+ colorectal cancers for changes in MSH2 and MLH1 protein expression, followed by the analysis of somatic mutation, loss of heterozygosity (LOH), and promoter hypermethylation as possible underlying defects. Most cases (36/46, 78%) showed lost or reduced MLH1 expression. Among these, a majority (83%) was associated with MLH1 promoter hypermethylation, whereas the rates of LOH and somatic mutation of MLH1 were 24% and 13%, respectively. Hypermethylation and LOH were inversely correlated, suggesting that they had alternative functions in the inactivation of MLH1. MSH2 expression was lost in 7/46 (15%), and of these, 2 (29%) showed LOH and/or somatic mutation of MSH2. We conclude that most sporadic MSI+ colorectal cancers have an MLH1-associated etiology and that epigenetic modification is a major mechanism of MLH1 inactivation. Moreover, we found a significantly lower prevalence for MLH1 promoter hypermethylation in hereditary nonpolyposis colorectal cancer tumors with MLH1 germline mutations (12/26, 46%), which might explain some differences that are known to occur in the clinicopathological characteristics and tumorigenic pathways between sporadic and hereditary MSI+ colorectal cancers.


Advances in Cancer Research | 1997

Mutations Predisposing to Hereditary Nonpolyposis Colorectal Cancer

Päivi Peltomäki; Albert de la Chapelle

Since 1993 four genes have been identified that, when mutated, confer predisposition to a form of hereditary colon cancer (hereditary nonpolyposis colorectal cancer [HNPCC]). These genes belong to the Mut-related family of DNA mismatch repair genes whose protein products are responsible for the recognition and correction of errors that arise during DNA replication. Mutational inactivation of both copies of a DNA mismatch repair gene results in a profound repair defect demonstrable by biochemical assays, and in vivo this defect is presumed to lead to progressive accumulation of secondary mutations throughout the genome, some of which affect important growth-regulatory genes and, hence, give rise to cancer. To date, more than 70 different germline mutations have been detected in DNA mismatch repair genes and shown to be associated with HNPCC. Current evidence suggests that two genes, MSH2 and MLH1, account for roughly equal proportions of HNPCC kindreds, together being responsible for a majority of these families, but striking interethnic differences occur. Most mutations lead to truncated protein products. Mutation screening is quite demanding in HNPCC since, with a few exceptions, the predisposing mutations typically vary from kindred to kindred and individual mutations are scattered throughout the genes. Knowledge of the predisposing mutations allows genotype-phenotype correlations and forms the basis for further studies clarifying the pathogenesis of this disorder. In at-risk individuals, it allows predictive testing for cancer susceptibility and, consequently, appropriate clinical management of mutation carriers and noncarriers.


Human Genetics | 1981

The etiology of maleness in XX men.

Albert de la Chapelle

SummaryInformation relating to the etiology of human XX males is reviewed. The lesser body height and smaller tooth size in comparison with control males and first-degree male relatives could imply that the patients never had any Y chromosome. Neither reports of occasional mitoses with a Y chromosome, nor of the occurrence of Y chromatin in Sertoli cells are convincing enough to support the idea that low-grade or circumscribed mosaicism is a common etiologic factor. Reports of an increase in length of one of the X chromosomes in XX males are few and some are conflicting. Nor is there any evidence to support the idea of loss of material. However, absence of visible cytogenetic alteration does not rule out the possibility of translocations, exchanges or deletions.A few familial cases are known. Mendelian gene mutations may account for a number of instances of XX males, similar genes being well known in several animal species. The existing geographical differences in the prevalence of human XX males could be explained by differences in gene frequency. But if gene mutation were a common cause of XX maleness there would be more familial cases.Any hypothesis explaining the etiology of XX males should take into account the following facts. There are at least 4 examples of XX males who have inherited the Xg allele carried by their fathers, and at least 9 of such males who have not. The frequency of the Xg phenotype among XX males is far closer to that of males than to that of females, while the absence of any color-blind XX males (among 40 tested) resembles the distribution in females. Furthermore, H-Y antigen is present in XX males, often at a strength intermediate between that in normal males and females. Finally, in a pedigree comprising three independently ascertained XX males, the mothers of all three are H-Y antigen-positive, and the pattern of inheritance of the antigen in two of them precludes X-chromosomal transmission.Many of the data are consistent with the hypothesis that XX males arise through interchange of the testic-determining gene on the Y chromosome and a portion of the X chromosome containing the Xg gene. However, actual evidence in favor of this hypothesis is still lacking, and the H-Y antigen data are not easy to explain. In contrast, if recent hypotheses on the mechanisms controlling the expression of H-Y antigen are confirmed, a gene exerting negative control on testis determination would be located near the end of of the short arm of the X chromosome. This putative gene is believed not to be inactivated in normal females, for at least two other genes located in the same region, i.e. Xg and steroid sulfatase, are not. Deletion or inactivation of these loci would explain how XX males arise and would be consistent with most, but not all, the facts.There is yet no single hypothesis that by itself can explain all the facts accumulated about XX males. While mosaicism appears very unlikely in most cases, Mendelian gene mutation, translocation, X-Y interchange, a minute deletion or preferential inactivation of an X chromosome, or part thereof, remain possible. The etiology of XX maleness may well be heterogeneous.

Collaboration


Dive into the Albert de la Chapelle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley R. Hamilton

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth W. Kinzler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David C. Page

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauri A. Aaltonen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Researchain Logo
Decentralizing Knowledge