Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert E. Munson is active.

Publication


Featured researches published by Albert E. Munson.


American Journal of Public Health | 2007

Work, Obesity, and Occupational Safety and Health

Paul A. Schulte; Gregory R. Wagner; Aleck Ostry; Laura A. Blanciforti; Robert G. Cutlip; Kristine Krajnak; Michael I. Luster; Albert E. Munson; James P. O’Callaghan; Christine G. Parks; Petia P. Simeonova; Diane B. Miller

There is increasing evidence that obesity and overweight may be related, in part, to adverse work conditions. In particular, the risk of obesity may increase in high-demand, low-control work environments, and for those who work long hours. In addition, obesity may modify the risk for vibration-induced injury and certain occupational musculoskeletal disorders. We hypothesized that obesity may also be a co-risk factor for the development of occupational asthma and cardiovascular disease that and it may modify the workers response to occupational stress, immune response to chemical exposures, and risk of disease from occupational neurotoxins. We developed 5 conceptual models of the interrelationship of work, obesity, and occupational safety and health and highlighted the ethical, legal, and social issues related to fuller consideration of obesitys role in occupational health and safety.


Toxicology | 2000

Comparison of mouse strains using the local lymph node assay

Michael R. Woolhiser; Albert E. Munson; B. Jean Meade

The local lymph node assay (LLNA), as recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), only allows for the use of CBA mice. The objective of these studies was to begin to assess the response of chemical sensitizers in the LLNA across six strains of female mice (C57BL/6, SJL/J, BALB/c, B6C3F1, DBA/2 and CBA). The moderate sensitizer alpha-hexylcinnamaldehyde (HCA) was chosen as the test chemical, while toluene diisocyanate (TDI) and 2,4-dinitrofluorobenzene (DNFB) were evaluated at single concentrations as positive controls. Draining lymph node cell proliferation following acetone exposure varied across strains. SJL mice had a significantly higher degree of proliferation with 2111 d.p.m./2 nodes. The remaining five strains demonstrated responses which ranged from 345 to 887 dpm/2 nodes. DBA/2, B6C3F1, BALB/c and CBA mice had essentially equal levels of lymph node proliferation following exposure to the three chemicals. While C57BL/6 mice gave similar results as CBA mice following DNFB and HCA administration, the LLNA response to TDI was considerably lower. SJL mice provided low stimulation indexes (SI) values for all three chemicals evaluated. Regardless of the level of LLNA response, all six mouse strains identified the sensitization potential of HCA, TDI or DNFB. Based on these studies, DBA/2, B6C3F1 and BALB/c mice are good choices for continued evaluation as additional mouse strains for use in the LLNA.


Toxicology and Applied Pharmacology | 2003

Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ERα

Bin He; Stacey Rhodes-Brower; Michael R. Miller; Albert E. Munson; Dori R. Germolec; Vickie R. Walker; Kenneth S. Korach; B. Jean Meade

Octamethylcyclotetrasiloxane (D4) is a low molecular weight cyclic silicone used in the synthesis of larger silicone polymers and in the formulation of a variety of personal care products. The effects of oral D4 exposure in mice on serum estradiol levels, uterine wet weight, and uterine peroxidase activity were investigated. Additionally, in vitro estrogen receptor binding activity was evaluated. Serum estradiol levels decreased in a dose-dependent manner after exposure to 100 mg/kg to 1000 mg/kg D4. Studies with adrenalectomized animals demonstrated that the decreased serum estradiol levels were not due to elevated serum corticosterone levels. Uterine wet weights in ovariectomized mice were significantly increased in a dose-dependent manner by exposure to 250-1000 mg of D4/kg, but not by exposure to other silicone compounds tested (hexamethylcyclotrisiloxane, decamethylcyclopentasiloxane, decamethyltetrasiloxane, and octaphenylcyclotetrasiloxane). Uterine peroxidase activity, a marker for estrogenic activity, was also significantly increased in D4-exposed mice, but not in mice exposed to the other siloxanes. Pretreating mice with the estrogen receptor antagonist ICI 182,780 completely blocked the D4-induced increase in uterine weight, and ovariectomized estrogen receptor-alpha knockout mice showed no increases in uterine weights when orally exposed to D4 or estradiol. In an in vitro estrogen receptor binding assay, D4 showed significant competition with (3)H-estradiol for binding to estrogen receptor-alpha, but not estrogen receptor-beta. The data presented here indicate that D4 has weak estrogenic activity, and that these effects are mediated through estrogen receptor-alpha.


The FASEB Journal | 2010

Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes

Krishnan Sriram; Gary X. Lin; Amy M. Jefferson; Jenny R. Roberts; Oliver Wirth; Yusuke Hayashi; Kristine Krajnak; Joleen M. Soukup; Andrew J. Ghio; Steven H. Reynolds; Vincent Castranova; Albert E. Munson; James M. Antonini

Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinsons disease (PD), thought to be mediated by manganese (Mn) in the fumes. Also, there is a proposition that welding might accelerate the onset of PD. Our recent findings link the presence of Mn in the WF with dopaminergic neurotoxicity seen in rats exposed to manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) fumes. To elucidate the molecular mechanisms further, we investigated the association of PD-linked (Park) genes and mitochondrial function in causing dopaminergic abnormality. Repeated instillations of the two fumes at doses that mimic ∼1 to 5 yr of worker exposure resulted in selective brain accumulation of Mn. This accumulation caused impairment of mitochondrial function and loss of tyrosine hydroxylase (TH) protein, indicative of dopaminergic injury. A fascinating finding was the altered expression of Parkin (Park2), Uchl1 (Park5), and Dj1 (Park7) proteins in dopaminergic brain areas. A similar regimen of manganese chloride (MnCl(2)) also caused extensive loss of striatal TH, mitochondrial electron transport components, and Park proteins. As mutations in PARK genes have been linked to early-onset PD in humans, and because welding is implicated as a risk factor for parkinsonism, PARK genes might play a critical role in WF-mediated dopaminergic dysfunction. Whether these molecular alterations culminate in neurobehavioral and neuropathological deficits reminiscent of PD remains to be ascertained.


Food and Chemical Toxicology | 1998

Immunological evaluation of the mycotoxin patulin in female B6C3F1 mice.

G.C Llewellyn; McCay Ja; Ronnetta D. Brown; Deborah L. Musgrove; Leon F. Butterworth; Albert E. Munson; Kimber L. White

Patulin is a mycotoxin produced by many fungal species of the genera Penicillium, Aspergillus and Bryssochamys. Previous literature reports have suggested that patulin is toxic to the immune system. The studies presented were conducted to provide a comprehensive assessment of the effects of patulin on the immune system. Unlike previous reports, the doses of patulin used (0.08, 0.16, 0.32, 0.64, 1.28 and 2.56 mg/kg) were based on predicted human exposure levels. Female B6C3F1 mice were exposed orally to patulin for 28 days. Effects were not observed on final body weight or body weight gain. Relative weight of the liver, spleen, thymus, kidneys with adrenals, and lungs was not affected. Peripheral blood leucocyte and lymphocyte counts were decreased by approximately 30% in the two highest dose groups. The leucocyte differential was not altered. Total spleen cell, total T-cell (CD3+), helper T-cell (CD4+CD8-), B-cell (surface immunoglobulin+) and monocyte (MAC-3+) counts were not changed. Cytotoxic T-cell (CD8+CD4-) counts were increased 50% only by the highest dose. Natural killer cell (NK1.1+CD3-) and monocyte (MAC-1+) counts were increased 30% and 24%, respectively, only in the 0.08 mg/kg group. Humoral immune function as assessed by antibody-forming cell response and serum IgM titre to sheep erythrocytes, and cell-mediated immune function evaluated utilizing natural killer cell activity and the mixed lymphocyte reaction were not altered. Oral exposure to patulin for 28 days did not alter the ability of female B6C3F1 mice to mount either a cell-mediated or humoral immune response.


Journal of Immunotoxicology | 2009

Evaluation of irritancy and sensitization potential of metalworking fluid mixtures and components.

Stacey E. Anderson; Kenneth K. Brown; Leon Butterworth; Adam Fedorowicz; Laurel G. Jackson; H. Fred Frasch; D.H. Beezhold; Albert E. Munson; B. J. Meade

There are approximately 1.2 million workers exposed to metalworking fluids (MWF), which are used to reduce the heat and friction associated with industrial machining and grinding operations. Irritancy and sensitization potential of 9 National Toxicology Program (NTP) nominated MWFs (TRIM 229, TRIM VX, TRIM SC210, CIMTECH 310, CIMPERIAL 1070, CIMSTAR 3800, SYNTILO 1023, SUPEREDGE 6768, and CLEAREDGE 6584) were examined in a combined local lymph node assay (LLNA). BALB/c mice were dermally exposed to each MWF at concentrations up to 50%. Significant irritation was observed after dermal exposure to all MWFs except CIMTECH 310 and SYNTILO 1023. Of the 9 MWFs, 6 induced greater than a 3-fold increase in lymphocyte proliferation and 7 tested positive in the irritancy assay. TRIM VX yielded the lowest EC3 value (6.9%) with respect to lymphocyte proliferation. Chemical components of TRIM VX identified using HPLC were screened for sensitization potential using structural activity relationship (SAR) modeling and the LLNA. TOPKAT predicted triethanolamine (TEA) as a sensitizer while Derek for Windows predicted only 4-chloro-3-methylphenol (CMP) to be positive for sensitization. When tested in the LLNA only CMP (EC3 = 11.6%) and oleic acid (OA) (EC3 = 29.7%) were identified as sensitizers. Exposure to all tested TRIM VX components resulted in statistically significant irritation. An additive proliferative response was observed when mixtures of the two identified sensitizing TRIM VX components, OA and CMP, were tested in the LLNA. This is one explanation of why the EC3 value of TRIM VX, with respect to lymphocyte proliferation, is lower than those assigned to its sensitizing components.


International Immunopharmacology | 2001

Analysis of gene expression induced by irritant and sensitizing chemicals using oligonucleotide arrays

Bin He; Albert E. Munson; B. Jean Meade

Chemical-induced allergy continues to be an important occupational health problem. Despite decades of investigation, the molecular mechanisms underlying chemical-induced hypersensitivity and irritancy remain unclear because of the complex interplay between properties of different chemicals and the immune system. In this study, gene expression induced by toluene diisocyanate (TDI, a primarily IgE-inducing sensitizer), oxazolone (OXA, a cell-mediated hypersensitivity inducing sensitizer), or nonanoic acid (NA, a non-sensitizing irritant) was investigated using gene arrays. Female BALB/c mice were dermally exposed on the ears once daily for 4 consecutive days. On day 5, the lymph nodes draining the exposure sites were collected and used for RNA extraction and subsequent hybridization to Affymetrix Mu6500 oligonucleotide arrays. Of the 6519 genes on the arrays, there were 44, 13, and 51 genes in the TDI-, OXA-, and NA-exposed samples, respectively, that displayed a minimum of twofold change in expression level relative to the vehicle control. There were 32, 19, and 19 genes that were differentially expressed (with a minimum of twofold change) between TDI and OXA, TDI and NA, OXA and NA, respectively. The differentially expressed genes include immune response-related genes, transcriptional factors, signal transducing molecules, and Expressed Sequence Tags. Based on the gene array results, candidate genes were further evaluated using RT-PCR. There was only about 47% concordance between the gene array and RT-PCR results.


Journal of Immunotoxicology | 2007

The Humoral Immune Response of Mice Exposed to Manual Metal Arc Stainless Steel-Welding Fumes

Stacey E. Anderson; B. Jean Meade; Leon Butterworth; Albert E. Munson

Arc welding is one of the most common forms of welding and includes the use of stainless steel electrodes that emit fumes containing chromium and nickel. Epidemological studies suggest a correlation between arc welding and adverse respiratory health effects. Studies evaluating the immunotoxic effects of welding fumes are limited due to the large number of variables associated with welding. This work investigates the immunotoxic effects of welding fumes by analyzing the in vivo and in vitro IgM response to a T-dependent antigen after welding fume exposure. Significant decreases in the total IgM activity/106 viable cells and total IgM activity/well were observed in splenocytes exposed to 5 μ g/ml of either total or soluble welding fumes. A significant reduction in the specific IgM activity in lung associated lymph node cells was also observed following four pharyngeal aspirations of 10 mg/kg total or soluble welding fumes to mice. Significant elevations in the absolute lymph node cell numbers for both B- and T-cells including the CD4+ and CD8+ subsets were observed. These results demonstrate that exposure to manual metal-stainless steel welding fumes is immunosuppressive in the presence of increased lymphoctye numbers in mice and raises concerns regarding the potential for adverse immunological effects to impact respiratory health in humans.


Nanotoxicology | 2014

The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide

Hong Kan; Zhongxin Wu; Yen-Chang Lin; Teh-hsun Chen; Jared L. Cumpston; Michael L. Kashon; Steve Leonard; Albert E. Munson; Vincent Castranova

Abstract The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular disease; however, the link between occupational exposure to engineered nanoparticles and adverse cardiovascular events remains unclear. In the present study, the authors demonstrated that pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose ganglia-regulated pathway via the activation of TRP channels in the lung.


Journal of Immunotoxicology | 2013

Immunotoxicity and allergic potential induced by topical application of dimethyl carbonate (DMC) in a murine model

Stacey E. Anderson; Jennifer Franko; Katie Anderson; Albert E. Munson; Ewa Lukomska; B. Jean Meade

Dimethyl carbonate (DMC) is an industrial chemical, used as a paint and adhesive solvent, with the potential for significant increases in production. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of DMC following dermal exposure using a murine model. Following a 28-day exposure, DMC produced a significant decrease in thymus weight at concentrations of 75% and greater. No effects on body weight, hematological parameters (erythrocytes, leukocytes, and their differentials), or immune cell phenotyping (B-cells, T-cells, and T-cell sub-sets) were identified. The IgM antibody response to sheep red blood cell (SRBC) was significantly reduced in the spleen but not the serum. DMC was not identified to be an irritant and evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50–100%, did not identify increases in lymphocyte proliferation. These results demonstrate that dermal exposure to DMC induces immune suppression in a murine model and raise concern about potential human exposure and the need for occupational exposure regulations.

Collaboration


Dive into the Albert E. Munson's collaboration.

Top Co-Authors

Avatar

B. Jean Meade

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Stacey E. Anderson

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Leon Butterworth

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Kimber L. White

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

B. J. Meade

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Dori R. Germolec

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael I. Luster

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petia P. Simeonova

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Adam Fedorowicz

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge