Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Gilg is active.

Publication


Featured researches published by Albert Gilg.


Mathematics and Computers in Simulation | 2012

Original article: Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties

M. Villegas; Florian Augustin; Albert Gilg; A. Hmaidi; Utz Wever

In this paper we consider the simulation of probabilistic chemical reactions in isothermal and adiabatic conditions. Models for reactions under isothermal conditions result in advection equations, adiabatic conditions yield the reactive Euler equations. In order to treat with scattering data, the equations are projected onto the polynomial chaos space. Scattering data can largely affect the estimation of quantities in the system, including variable optimization. This is demonstrated on a selective non-catalytic reduction of nitric oxide.


Archive | 2008

Intrusive versus Non-Intrusive Methods for Stochastic Finite Elements

M. Herzog; Albert Gilg; Meinhard Paffrath; Peter Rentrop; Utz Wever

In this paper we compare an intrusive with an non-intrusive method for computing Polynomial Chaos expansions. The main disadvantage of the nonintrusive method, the high number of function evaluations, is eliminated by a special Adaptive Gauss-Quadrature method. A detailed efficiency and accuracy analysis is performed for the new algorithm. The Polynomial Chaos expansion is applied to a practical problem in the field of stochastic Finite Elements.


Journal of Mathematics in Industry | 2013

An accuracy comparison of polynomial chaos type methods for the propagation of uncertainties

Florian Augustin; Albert Gilg; Meinhard Paffrath; Peter Rentrop; Manuel Villegas; Utz Wever

In (Augustin et al. in European J. Appl. Math. 19:149-190, 2008) we considered the Polynomial Chaos Expansion for the treatment of uncertainties in industrial applications. For many applications the method has been proven to be a computationally superior alternative to Monte Carlo evaluations. In the current overview we compare the accuracy of Polynomial Chaos type methods for the propagation of uncertainties in nonlinear problems and verify them on two examples relevant for industry. For weakly nonlinear time-dependent models, the generalized Kalman filter equations define an efficient method, yielding good approximations if the quantities of interest are restricted to the first two moments of the solution. Secondly, stochastic collocation is discussed. The method is applied to delay differential equations and random ordinary differential equations. Finally, a generalized PC method is discussed which is based on a subdivision of the random space. This approach is even suitable for highly nonlinear models.


Supercomputer | 1992

Numerische Simulation in der Mikroelektronik

Albert Gilg

Der Fortschritt der Mikroelektronik setzt sich ungebremst fort: Die Integrationsdichte der „Technologie-Lokomotive“ dynamischer Speicherchip DRAM*> vervierfacht .sich alle drei Jahre. Die Siliziumprozestechnik ist dabei weiterhin die industrielle „main stream“ Technologie. Diese exponentielle Komplexitatsexplosion forciert weitere Durchbruche in den zahlreichen beteiligten Technologien, z.B. den Materialwissenschaften, den Fertigungstechnologien und auch der Simulationstechnik und den numerischen Algorithmen. Weitere Fortschritte sind heute ohne die zeit- und kosteneffizienten Einsatz von Simulationsprogrammen auf Hochstleistungsrechnern nicht mehr denkbar. Bereits seit den 70er Jahren ist die Sch8J.tkreissimulation ein Standardwerkzeug der Schaltungsdesigner. Die steigenden Komplexitaten erforderten den fruhzeitigen Einsatz von Hochleistungsrechnern und die Entwicklung spezieller Algorithmen. Auch fur die Charakterisierung und Entwicklung von Transistoren und Speicherzellenkonzepten haben sich Simulationswerkzeuge etabliert, die die zugrundeliegenden nichtlinearen partiellen Differentialgleichungssysteme in drei Raumdimensionen und zeitabhangig berechnen. Grose Herausforderungen stellen die Simulation der Fertigungsschritte im mikro- und makroskopischen Bereich mit einer Vielzahl von algorithmischen und modellierungstechnischen Problemen. Neue Problemkreise treten auf: Neben dem Zwang die Investitionsexplosion fur die Fertigungstechnik durch simulative Systemansatze zu bremsen, stellt die notwendige Einbeziehung von magnetischen, thermischen, mechanischen und optischen Effekten weitere komplexe Herausforderungen an die Entwicklung von Algorithmen und die Leistungsfahigkeit von Computern.


European Journal of Applied Mathematics | 2008

Polynomial chaos for the approximation of uncertainties: Chances and limits

Florian Augustin; Albert Gilg; Meinhard Paffrath; Peter Rentrop; Utz Wever


Archive | 2003

Modeling, Simulation, and Optimization of Integrated Circuits

Kurt Antreich; Roland Bulirsch; Albert Gilg; Peter Rentrop


Archive | 2006

Probabilistic design tool for optimizing a technical system

Albert Gilg; Francesco Montrone; Meinhard Paffrath; Utz Wever


Computing and Visualization in Science | 2015

Architecture for modeling and simulation of technical systems along their lifecycle

Tim Schenk; Albert Gilg; Monika Mühlbauer; Roland Rosen; Jan Christoph Wehrstedt


Archive | 2012

A city lifecycle management system

Reinhold Achatz; Stefan Boschert; Albert Gilg; Thomas Gruenewald; George Lo; Birgit Obst; Roland Rosen; Tim Schenk


Archive | 2011

An apparatus and a method for performing a difference measurement of an object image

Albert Gilg; Utz Wever; Yayun Zhou

Collaboration


Dive into the Albert Gilg's collaboration.

Researchain Logo
Decentralizing Knowledge