Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Guskov is active.

Publication


Featured researches published by Albert Guskov.


Nature Structural & Molecular Biology | 2009

Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride.

Albert Guskov; Jan Kern; A. G. Gabdulkhakov; Matthias Broser; Athina Zouni; Wolfram Saenger

Photosystem II (PSII) is a large homodimeric protein–cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-Å resolution allowed the unambiguous assignment of all 20 protein subunits and complete modeling of all 35 chlorophyll a molecules and 12 carotenoid molecules, 25 integral lipids and 1 chloride ion per monomer. The presence of a third plastoquinone QC and a second plastoquinone-transfer channel, which were not observed before, suggests mechanisms for plastoquinol-plastoquinone exchange, and we calculated other possible water or dioxygen and proton channels. Putative oxygen positions obtained from a Xenon derivative indicate a role for lipids in oxygen diffusion to the cytoplasmic side of PSII. The chloride position suggests a role in proton-transfer reactions because it is bound through a putative water molecule to the Mn4Ca cluster at a distance of 6.5 Å and is close to two possible proton channels.


The Journal of General Physiology | 2014

Structural diversity of ABC transporters

Josy ter Beek; Albert Guskov; Dirk Jan Slotboom

ATP-binding cassette (ABC) transporters form a large superfamily of ATP-dependent protein complexes that mediate transport of a vast array of substrates across membranes. The 14 currently available structures of ABC transporters have greatly advanced insight into the transport mechanism and revealed a tremendous structural diversity. Whereas the domains that hydrolyze ATP are structurally related in all ABC transporters, the membrane-embedded domains, where the substrates are translocated, adopt four different unrelated folds. Here, we review the structural characteristics of ABC transporters and discuss the implications of this structural diversity for mechanistic diversity.


ChemPhysChem | 2010

Recent progress in the crystallographic studies of photosystem II.

Albert Guskov; A. G. Gabdulkhakov; Matthias Broser; Carina Glöckner; Julia Hellmich; Jan Kern; Joachim Frank; Frank Müh; Wolfram Saenger; Athina Zouni

The photosynthetic oxygen-evolving photosystem II (PSII) is the only known biochemical system that is able to oxidize water molecules and thereby generates almost all oxygen in the Earths atmosphere. The elucidation of the structural and mechanistic aspects of PSII keeps scientists all over the world engaged since several decades. In this Minireview, we outline the progress in understanding PSII based on the most recent crystal structure at 2.9 A resolution. A likely position of the chloride ion, which is known to be required for the fast turnover of water oxidation, could be determined in native PSII and is compared with work on bromide and iodide substituted PSII. Moreover, eleven new integral lipids could be assigned, emphasizing the importance of lipids for the perfect function of PSII. A third plastoquinone molecule (Q(C)) and a second quinone transfer channel are revealed, making it possible to consider different mechanisms for the exchange of plastoquinone/plastoquinol molecules. In addition, possible transport channels for water, dioxygen and protons are identified.


Structure | 2009

Probing the accessibility of the Mn(4)Ca cluster in photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO.

A. G. Gabdulkhakov; Albert Guskov; Matthias Broser; Jan Kern; Frank Müh; Wolfram Saenger; Athina Zouni

Using the 2.9 A resolution structure of the membrane-intrinsic protein-cofactor complex photosystem II (PSII) from the cyanobacterium Thermosynechococcus elongatus, we calculated and characterized nine possible substrate/product channels leading to/away from the Mn(4)Ca cluster, where water is oxidized to dioxygen, protons, and electrons. Five narrow channels could function in proton transport, assuming that no large structural changes are associated with water oxidation. Four wider channels could serve to supply water to or remove oxygen from the Mn(4)Ca cluster. One of them might be regulated by conformational changes of Lys134 in subunit PsbU. Data analyses of Kr derivatized crystals and complexes with dimethyl sulfoxide (DMSO) confirm the accessibility of the proposed dioxygen channels to other molecules. Results from Xe derivatization suggest that the lipid clusters within PSII could serve as a drain for oxygen because of their predominant hydrophobic character and mediate dioxygen release from the lumen.


Journal of Biological Chemistry | 2010

Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6 Å resolution

Matthias Broser; A. G. Gabdulkhakov; Jan Kern; Albert Guskov; Frank Müh; Wolfram Saenger; Athina Zouni

The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first crystallization and structural analysis of the monomeric form of PSIIcc with high oxygen evolution capacity, isolated from Thermosynechococcus elongatus. The crystals belong to the space group C2221, contain one monomer per asymmetric unit, and diffract to a resolution of 3.6 Å. The x-ray diffraction pattern of the PSIIcc-monomer crystals exhibit less anisotropy (dependence of resolution on crystal orientation) compared with crystals of dimeric PSIIcc, and the packing of the molecules within the unit cell is different. In the monomer, 19 protein subunits, 35 chlorophylls, two pheophytins, the non-heme iron, the primary plastoquinone QA, two heme groups, 11 β-carotenes, 22 lipids, seven detergent molecules, and the Mn4Ca cluster of the water oxidizing complex could be assigned analogous to the dimer. Based on the new structural information, the roles of lipids and protein subunits in dimer formation of PSIIcc are discussed. Due to the lack of non-crystallographic symmetry and the orientation of the membrane normal of PSIIcc perpendicular (∼87°) to the crystallographic b-axis, further information about the structure of the Mn4Ca cluster is expected to become available from orientation-dependent spectroscopy on this new crystal form.


Journal of Biological Chemistry | 2011

Structural Basis of Cyanobacterial Photosystem II Inhibition by the Herbicide Terbutryn

Matthias Broser; Carina Glöckner; A. G. Gabdulkhakov; Albert Guskov; Joachim Buchta; Jan Kern; Frank Müh; Holger Dau; Wolfram Saenger; Athina Zouni

Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the QB site in the D1 subunit and thus block the electron transfer from QA to QB. Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the QB site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of QA, which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334–342). This discovery is discussed in the context of proton transfer to the lumen.


EMBO Reports | 2012

Structural Basis of Ligand Recognition in 5-Ht3 Receptors.

Divya Kesters; Andrew J. Thompson; Marijke Brams; René van Elk; Radovan Spurny; Matthis Geitmann; Jose M. Villalgordo; Albert Guskov; U. Helena Danielson; Sarah C. R. Lummis; August B Smit; Chris Ulens

The 5‐HT3 receptor is a pentameric serotonin‐gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti‐emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5‐HT3 receptor. In the serotonin‐bound structure, we observe hydrophilic interactions with loop E‐binding site residues, which might enable transitions to channel opening. In the granisetron‐bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5‐HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high‐affinity ligand binding in the human 5‐HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti‐emetics in the 5‐HT3 receptor.


Journal of Biological Chemistry | 2011

Crystal structures of a cysteine-modified mutant in loop D of acetylcholine-binding protein

Marijke Brams; José Colón Sáez; Albert Guskov; René van Elk; Roel C. van der Schors; Steve Peigneur; Jan Tytgat; Sergei V. Strelkov; August B. Smit; Jerrel L. Yakel; Chris Ulens

Covalent modification of α7 W55C nicotinic acetylcholine receptors (nAChR) with the cysteine-modifying reagent [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET+) produces receptors that are unresponsive to acetylcholine, whereas methyl methanethiolsulfonate (MMTS) produces enhanced acetylcholine-gated currents. Here, we investigate structural changes that underlie the opposite effects of MTSET+ and MMTS using acetylcholine-binding protein (AChBP), a homolog of the extracellular domain of the nAChR. Crystal structures of Y53C AChBP show that MTSET+-modification stabilizes loop C in an extended conformation that resembles the antagonist-bound state, which parallels our observation that MTSET+ produces unresponsive W55C nAChRs. The MMTS-modified mutant in complex with acetylcholine is characterized by a contracted C-loop, similar to other agonist-bound complexes. Surprisingly, we find two acetylcholine molecules bound in the ligand-binding site, which might explain the potentiating effect of MMTS modification in W55C nAChRs. Unexpectedly, we observed in the MMTS-Y53C structure that ten phosphate ions arranged in two rings at adjacent sites are bound in the vestibule of AChBP. We mutated homologous residues in the vestibule of α1 GlyR and observed a reduction in the single channel conductance, suggesting a role of this site in ion permeation. Taken together, our results demonstrate that targeted modification of a conserved aromatic residue in loop D is sufficient for a conformational switch of AChBP and that a defined region in the vestibule of the extracellular domain contributes to ion conduction in anion-selective Cys-loop receptors.


Nature Structural & Molecular Biology | 2013

Crystal structure of a substrate-free aspartate transporter.

Sonja Jensen; Albert Guskov; Stephan Rempel; Inga Hänelt; Dirk Jan Slotboom

Archaeal glutamate transporter homologs catalyze the coupled uptake of aspartate and three sodium ions. After the delivery of the substrate and sodium ions to the cytoplasm, the empty binding site must reorient to the outward-facing conformation to reset the transporter. Here, we report a crystal structure of the substrate-free transporter GltTk from Thermococcus kodakarensis, which provides insight into the mechanism of this essential step in the translocation cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA

Albert Guskov; Nurhuda Nordin; Aline Reynaud; Henrik Engman; Anna-Karin Lundbäck; Agnes Jin Oi Jong; Tobias Cornvik; Terri Phua; Said Eshaghi

Despite the importance of Mg2+ for numerous cellular activities, the mechanisms underlying its import and homeostasis are poorly understood. The CorA family is ubiquitous and is primarily responsible for Mg2+ transport. However, the key questions—such as, the ion selectivity, the transport pathway, and the gating mechanism—have remained unanswered for this protein family. We present a 3.2 Å resolution structure of the archaeal CorA from Methanocaldococcus jannaschii, which is a unique complete structure of a CorA protein and reveals the organization of the selectivity filter, which is composed of the signature motif of this family. The structure reveals that polar residues facing the channel coordinate a partially hydrated Mg2+ during the transport. Based on these findings, we propose a unique gating mechanism involving a helical turn upon the binding of Mg2+ to the regulatory intracellular binding sites, and thus converting a polar ion passage into a narrow hydrophobic pore. Because the amino acids involved in the uptake, transport, and gating are all conserved within the entire CorA family, we believe this mechanism is general for the whole family including the eukaryotic homologs.

Collaboration


Dive into the Albert Guskov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfram Saenger

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Athina Zouni

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jan Kern

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Matthias Broser

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

A. G. Gabdulkhakov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Müh

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Said Eshaghi

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge