Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert H. Kim is active.

Publication


Featured researches published by Albert H. Kim.


Nature Medicine | 2009

Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease

Alan H. Nagahara; David A. Merrill; Giovanni Coppola; Shingo Tsukada; Brock E. Schroeder; Gideon M. Shaked; Ling Wang; Armin Blesch; Albert H. Kim; James M. Conner; Edward Rockenstein; Moses V. Chao; Edward H. Koo; Daniel H. Geschwind; Eliezer Masliah; Andrea A. Chiba; Mark H. Tuszynski

Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimers disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimers disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory. These outcomes occur independently of effects on amyloid plaque load. In aged rats, BDNF infusion reverses cognitive decline, improves age-related perturbations in gene expression and restores cell signaling. In adult rats and primates, BDNF prevents lesion-induced death of entorhinal cortical neurons. In aged primates, BDNF reverses neuronal atrophy and ameliorates age-related cognitive impairment. Collectively, these findings indicate that BDNF exerts substantial protective effects on crucial neuronal circuitry involved in Alzheimers disease, acting through amyloid-independent mechanisms. BDNF therapeutic delivery merits exploration as a potential therapy for Alzheimers disease.


Molecular and Cellular Biology | 2001

Akt Phosphorylates and Negatively Regulates Apoptosis Signal-Regulating Kinase 1

Albert H. Kim; Gus Khursigara; Xuan Sun; Thomas F. Franke; Moses V. Chao

ABSTRACT The Akt family of serine/threonine-directed kinases promotes cellular survival in part by phosphorylating and inhibiting death-inducing proteins. Here we describe a novel functional interaction between Akt and apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase. Akt decreased ASK1 kinase activity stimulated by both oxidative stress and overexpression in 293 cells by phosphorylating a consensus Akt site at serine 83 of ASK1. Activation of the phosphoinositide 3-kinase (PI3-K)/Akt pathway also inhibited the serum deprivation-induced activity of endogenous ASK1 in L929 cells. An association between Akt and ASK1 was detected in cells by coimmunoprecipitation. Phosphorylation by Akt inhibited ASK1-mediated c-Jun N-terminal kinase and activating transcription factor 2 activities in intact cells. Finally, activation of the PI3-K/Akt pathway reduced apoptosis induced by ASK1 in a manner dependent on phosphorylation of serine 83 of ASK1. These results provide the first direct link between Akt and the family of stress-activated kinases.


Neuron | 2002

Akt1 Regulates a JNK Scaffold during Excitotoxic Apoptosis

Albert H. Kim; Hiroko Yano; Han Cho; Debra J. Meyer; Bob R. Monks; Ben Margolis; Morris J. Birnbaum; Moses V. Chao

Cell survival is determined by a balance among signaling cascades, including those that recruit the Akt and JNK pathways. Here we describe a novel interaction between Akt1 and JNK interacting protein 1 (JIP1), a JNK pathway scaffold. Direct association between Akt1 and JIP1 was observed in primary neurons. Neuronal exposure to an excitotoxic stimulus decreased the Akt1-JIP1 interaction and concomitantly increased association between JIP1 and JNK. Akt1 interaction with JIP1 inhibited JIP1-mediated potentiation of JNK activity by decreasing JIP1 binding to specific JNK pathway kinases. Consistent with this view, neurons from Akt1-deficient mice exhibited higher susceptibility to kainate than wild-type littermates. Overexpression of Akt1 mutants that bind JIP1 reduced excitotoxic apoptosis. These results suggest that Akt1 binding to JIP1 acts as a regulatory gate preventing JNK activation, which is released under conditions of excitotoxic injury.


Nature | 2016

Bioresorbable silicon electronic sensors for the brain

Seung-Kyun Kang; Rory K.J. Murphy; Suk Won Hwang; Seung Min Lee; Daniel V. Harburg; Neil A. Krueger; Jiho Shin; Paul Gamble; Huanyu Cheng; Sooyoun Yu; Zhuangjian Liu; Jordan G. McCall; Manu Stephen; Hanze Ying; Jeonghyun Kim; Gayoung Park; R. Chad Webb; Chi Hwan Lee; Sangjin Chung; Dae Seung Wie; Amit D. Gujar; Bharat Vemulapalli; Albert H. Kim; Kyung Mi Lee; Jianjun Cheng; Younggang Huang; Sang Hoon Lee; Paul V. Braun; Wilson Z. Ray; John A. Rogers

Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body’s abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.


Current Opinion in Neurobiology | 2001

The uniqueness of being a neurotrophin receptor.

Francis S. Lee; Albert H. Kim; Gus Khursigara; Moses V. Chao

Neurotrophins rely on Trk tyrosine kinase and p75 receptors for signal transduction. Recently, other roles for these receptors have been identified. Many questions have been raised about the mechanism by which these receptors mediate diverse cellular functions. Studies indicate a great deal of neurotrophin signaling specificity may stem from ligand-receptor selectivity and intracellular protein recruitment.


Cell | 2009

A Centrosomal Cdc20-APC Pathway Controls Dendrite Morphogenesis in Postmitotic Neurons

Albert H. Kim; Sidharth V. Puram; Parizad M. Bilimoria; Yoshiho Ikeuchi; Samantha Keough; Michael Wong; David H. Rowitch; Azad Bonni

The ubiquitin ligase anaphase-promoting complex (APC) recruits the coactivator Cdc20 to drive mitosis in cycling cells. However, the nonmitotic functions of Cdc20-APC have remained unexplored. We report that Cdc20-APC plays an essential role in dendrite morphogenesis in postmitotic neurons. Knockdown of Cdc20 in cerebellar slices and in postnatal rats in vivo profoundly impairs the formation of granule neuron dendrite arbors in the cerebellar cortex. Remarkably, Cdc20 is enriched at the centrosome in neurons, and the centrosomal localization is critical for Cdc20-dependent dendrite development. We also find that the centrosome-associated protein histone deacetylase 6 (HDAC6) promotes the polyubiquitination of Cdc20, stimulates the activity of centrosomal Cdc20-APC, and drives the differentiation of dendrites. These findings define a postmitotic function for Cdc20-APC in the morphogenesis of dendrites in the mammalian brain. The identification of a centrosomal Cdc20-APC ubiquitin signaling pathway holds important implications for diverse biological processes, including neuronal connectivity and plasticity.


Brain Research | 2000

L-type Ca2+ channel-mediated Zn2+ toxicity and modulation by ZnT-1 in PC12 cells

Albert H. Kim; Christian T. Sheline; Min Tian; Toshio Higashi; Robert J. McMahon; Robert J. Cousins; Dennis W. Choi

In view of evidence that Zn(2+) neurotoxicity contributes to some forms of pathological neuronal death, we developed a model of Zn(2+) neurotoxicity in a cell line amenable to genetic manipulations. Exposure to 500 microM ZnCl(2) for 15 min under depolarizing conditions resulted in modest levels of PC12 cell death, that was reduced by the L-type Ca(2+) channel antagonist, nimodipine, and increased by the L-type Ca(2+) channel opener, S(-)-Bay K 8644. At lower insult levels (200 micrometer Zn(2+)+Bay K 8644), Zn(2+)-induced death appeared apoptotic under electron microscopy and was sensitive to the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-CH(2)F (Z-VAD); at higher insult levels (1000 microM+Bay K 8644), cells underwent necrosis insensitive to Z-VAD. To test the hypothesis that the plasma membrane transporter, ZnT-1, modulates Zn(2+) neurotoxicity, we generated stable PC12 cell lines overexpressing wild type or dominant negative forms of rat ZnT-1 (rZnT-1). Clones T9 and T23 overexpressing wild type rZnT-1 exhibited enhanced Zn(2+) efflux and reduced vulnerability to Zn(2+)-induced death compared to the parental line, whereas clones D5 and D16 expressing dominant negative rZnT-1 exhibited the opposite characteristics.


Nature Neuroscience | 2014

Inhibition of mitochondrial protein import by mutant huntingtin

Hiroko Yano; Sergei V. Baranov; Oxana V. Baranova; Jinho Kim; Yanchun Pan; Svitlana Yablonska; Diane L. Carlisle; Robert J. Ferrante; Albert H. Kim; Robert M. Friedlander

Mitochondrial dysfunction is associated with neuronal loss in Huntingtons disease (HD), a neurodegenerative disease caused by an abnormal polyglutamine expansion in huntingtin (Htt). However, the mechanisms linking mutant Htt and mitochondrial dysfunction in HD remain unknown. We identify an interaction between mutant Htt and the TIM23 mitochondrial protein import complex. Remarkably, recombinant mutant Htt directly inhibited mitochondrial protein import in vitro. Furthermore, mitochondria from brain synaptosomes of presymptomatic HD model mice and from mutant Htt-expressing primary neurons exhibited a protein import defect, suggesting that deficient protein import is an early event in HD. The mutant Htt–induced mitochondrial import defect and subsequent neuronal death were attenuated by overexpression of TIM23 complex subunits, demonstrating that deficient mitochondrial protein import causes mutant Htt-induced neuronal death. Collectively, these findings provide evidence for a direct link between mutant Htt, mitochondrial dysfunction and neuronal pathology, with implications for mitochondrial protein import–based therapies in HD.


Science | 2009

A Cdc20-APC Ubiquitin Signaling Pathway Regulates Presynaptic Differentiation

Yue Yang; Albert H. Kim; Tomoko Yamada; Bei Wu; Parizad M. Bilimoria; Yoshiho Ikeuchi; Núria de la Iglesia; Jie Shen; Azad Bonni

Cdc20-APC in Synapse Formation The E3 ubiquitin ligase Cdc20-anaphase promoting complex (Cdc20-APC) has important roles in the control of the cell division cycle. Yang et al. (p. 575) now show that Cdc20-APC also appears to be required for proper formation of synapses by developing neurons in the rat brain. When Cdc20-APC was depleted from cultured neurons or in the brains of developing rat pups, synapse formation was inhibited. The brain-enriched transcription factor NeuroD2 was shown to be a possible target of Cdc20-APC–stimulated degradation. NeuroD2 may act by promoting synthesis of Complexin II, a protein that regulates synaptic vesicle fusion. The ubiquitin ligase Cdc20-APC is required for proper synapse formation in the developing rat brain. Presynaptic axonal differentiation is essential for synapse formation and the establishment of neuronal circuits. However, the mechanisms that coordinate presynaptic development in the brain are largely unknown. We found that the major mitotic E3 ubiquitin ligase Cdc20-anaphase promoting complex (Cdc20-APC) regulates presynaptic differentiation in primary postmitotic mammalian neurons and in the rat cerebellar cortex. Cdc20-APC triggered the degradation of the transcription factor NeuroD2 and thereby promoted presynaptic differentiation. The NeuroD2 target gene encoding Complexin II, which acts locally at presynaptic sites, mediated the ability of NeuroD2 to suppress presynaptic differentiation. Thus, our findings define a Cdc20-APC ubiquitin signaling pathway that governs presynaptic development, which holds important implications for neuronal connectivity and plasticity in the brain.


Nature Neuroscience | 2011

A CaMKII[beta] signaling pathway at the centrosome regulates dendrite patterning in the brain

Sidharth V. Puram; Albert H. Kim; Yoshiho Ikeuchi; Joshua T. Wilson-Grady; Andreas Merdes; Steven P. Gygi; Azad Bonni

The protein kinase calcium/calmodulin-dependent kinase II (CaMKII) predominantly consists of the α and β isoforms in the brain. Although CaMKIIα functions have been elucidated, the isoform-specific catalytic functions of CaMKIIβ have remained unknown. Using knockdown analyses in primary rat neurons and in the rat cerebellar cortex in vivo, we report that CaMKIIβ operates at the centrosome in a CaMKIIα-independent manner to drive dendrite retraction and pruning. We also find that the targeting protein PCM1 (pericentriolar material 1) localizes CaMKIIβ to the centrosome. Finally, we uncover the E3 ubiquitin ligase Cdc20-APC (cell division cycle 20–anaphase promoting complex) as a centrosomal substrate of CaMKIIβ. CaMKIIβ phosphorylates Cdc20 at Ser51, which induces Cdc20 dispersion from the centrosome, thereby inhibiting centrosomal Cdc20-APC activity and triggering the transition from growth to retraction of dendrites. Our findings define a new, isoform-specific function for CaMKIIβ that regulates ubiquitin signaling at the centrosome and thereby orchestrates dendrite patterning, with important implications for neuronal connectivity in the brain.

Collaboration


Dive into the Albert H. Kim's collaboration.

Top Co-Authors

Avatar

Michael R. Chicoine

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eric C. Leuthardt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Keith M. Rich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jiayi Huang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David D. Tran

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

C.G. Robinson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jian Campian

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ralph G. Dacey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Zipfel

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Todd DeWees

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge