Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert H. Vette is active.

Publication


Featured researches published by Albert H. Vette.


Neuroscience Letters | 2007

Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing.

Kei Masani; Albert H. Vette; Motoki Kouzaki; Hiroaki Kanehisa; Tetsuo Fukunaga; Milos R. Popovic

When an inverted pendulum approximates quiet standing, it is assumed that the distance between the center of pressure and the vertical projection of the center of mass on the ground (COP-COG) reflects the relationship between the controlling and controlled variables of the balance control mechanism, and that the center of mass acceleration (ACC) is proportional to COP-COG. As aging affects the control mechanism of balance during quiet standing, COP-COG must be influenced by aging and, as a result, ACC is influenced by aging as well. The purpose of this study was to test the hypotheses that aging results in an increased COP-COG amplitude and, as a consequence, that ACC becomes larger in the elderly than the young. Fifteen elderly and 11 young subjects stood quietly on a force platform with their eyes open or closed. We found that (1) the standard deviations of COP-COG and ACC were larger in the elderly than in the young, irrespective of the eye condition; (2) COP-COG is proportional to ACC in both age groups, i.e., the inverted pendulum assumption holds true for quiet standing. The results suggest that a change in the control strategy that is due to aging causes a larger COP-COG in the elderly and, as a consequence, that ACC becomes larger as well.


Journal of Neurophysiology | 2008

Neuromusculoskeletal Torque-Generation Process Has a Large Destabilizing Effect on the Control Mechanism of Quiet Standing

Kei Masani; Albert H. Vette; Noritaka Kawashima; Milos R. Popovic

The delay of the sensory-motor feedback loop is a destabilizing factor within the neural control mechanism of quiet standing. The purposes of this study were 1) to experimentally identify the neuromusculoskeletal torque-generation process during standing posture and 2) to investigate the effect of the delay induced by this system on the control mechanism of balance during quiet standing. Ten healthy adults participated in this study. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the natural ankle angle during quiet standing. Each subject was asked to mimic the ankle torque fluctuation by exerting voluntary ankle extension while keeping the supported standing posture. Using the rectified soleus electromyogram as the input and the ankle torque as the output, a critically damped, second-order system (twitch contraction time of 0.152 +/- 0.027 s) successfully described the dynamics of the torque-generation process. According to the performed Bode analysis, the phase delay induced by this torque-generation process in the frequency region of spontaneous body sway during quiet standing was considerably large, corresponding to an effective time delay of about 200 to 380 ms. We compared the stability of the balance control system with and without the torque-generation process and demonstrated that a much smaller number of gain combinations can stabilize the model with the torque-generation process than without it. We concluded that the phase delay induced by the torque-generation process is a more destabilizing factor in the control mechanism of quiet standing than previously assumed, which restricts the control strategies that can stabilize the entire system.


Physical Medicine and Rehabilitation Clinics of North America | 2014

Functional Electrical Stimulation and Spinal Cord Injury

Chester H. Ho; Anastasia L. Elias; Kevin L. Kilgore; Anthony F. DiMarco; Kath M. Bogie; Albert H. Vette; Musa L. Audu; Rudi Kobetic; Sarah R. Chang; K. Ming Chan; Sean P. Dukelow; Dennis J. Bourbeau; Steven W. Brose; Kenneth J. Gustafson; Zelma H.T. Kiss; Vivian K. Mushahwar

Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2007

Implementation of a Physiologically Identified PD Feedback Controller for Regulating the Active Ankle Torque During Quiet Stance

Albert H. Vette; Kei Masani; Milos R. Popovic

Our studies have recently demonstrated that a proportional and derivative (PD) feedback controller, which takes advantage of the bodys position and velocity information to regulate balance during quiet standing, can compensate for long neurological time delays and generate a control command that precedes body sway by 100-200 ms. Furthermore, PD gain pairs were identified that ensure a robust system behavior and at the same time generate dynamic responses as observed in quiet standing experiments with able-bodied subjects. The purpose of the present study was to experimentally verify that the PD controller identified in our previous study can: 1) regulate the active ankle torque to stabilize the body during quiet standing in spite of long neurological time delays and 2) generate system dynamics, i.e., a motor command and body sway fluctuation, that successfully mimic those of the physiologic system of quiet standing. Our real-time closed-loop feedback circuit consisted of a center of mass position sensor and a functional electrical stimulator that elicited contractions of the plantar flexors as determined by the aforementioned PD controller. The control system regulated upright stance of a subject who was partially de-afferented and de-efferented due to a neurological disorder called von Hippel-Lindau Syndrome (McCormick Grade III). While the subject was able to generate a motor command for the ankle joints, he could not regulate the resulting torque sufficiently due to a lack of sensory feedback and motor control. It is important to mention that a time delay was included in the closed-loop circuit of the PD controller to mimic the actual neurological time delay observed in able-bodied individuals. The experimental results of this case study suggest that the proposed PD controller in combination with a functional electrical stimulation system can regulate the active ankle torque during quiet stance and generate the same system dynamics as observed in healthy individuals. While these findings do not imply that the CNS actually applies a PD-like control strategy to regulate balance, they suggest that it is at least theoretically possible.


Clinical Biomechanics | 2009

Postural reactions of the trunk muscles to multi-directional perturbations in sitting

Kei Masani; Vivian W. Sin; Albert H. Vette; T. Adam Thrasher; Noritaka Kawashima; Alan Morris; Richard Preuss; Milos R. Popovic

BACKGROUND The dynamic role of the trunk musculature, with respect to stability, has not been fully explored to date. The purpose of this study was, using a transient and multi-directional perturbation, to: (1) quantify the tonic level of activity in the superficial trunk musculature prior to any perturbation; (2) quantify the phasic activity in those same muscles following application of a transient, horizontally directed load; and (3) quantify the direction-dependent behavior of this phasic response. METHODS Twelve healthy individuals were perturbed during sitting via a chest harness in eight horizontal directions. Surface electromyograms were measured bilaterally from the abdominal (rectus abdominis, internal and external obliques) and back musculature (thoracic and lumbar erector spinae) to determine the tonic muscle activity prior to perturbation, and the phasic response following perturbation. A descriptive model was used to characterize the relationship between the phasic response of the muscles due to perturbation and the pulling direction. FINDINGS Tonic activity in the trunk musculature in upright sitting is low, but still above resting levels by at about 1-3% of the MVC for the abdominal muscles, and 4-6% for the back muscles. Each trunk muscle also showed a direction-specific, phasic activation in response to perturbation, above these tonic levels of activation. This phasic activation was accurately modeled using a descriptive model for each muscle. INTERPRETATION The obtained muscle activation level and the identified descriptive model will be applied in the design of a closed-loop controller for functional electrical stimulation.


Spinal Cord | 2010

Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury

Dimitry G. Sayenko; Maria I. Alekhina; Kei Masani; Albert H. Vette; H Obata; Milos R. Popovic; Kimitaka Nakazawa

Objectives:(1) To evaluate the learning potential and performance improvements during standing balance training with visual feedback (VBT) in individuals with incomplete spinal cord injury (SCI) and (2) to determine whether standing static and dynamic stability during training-irrelevant tasks can be improved after the VBT.Setting:National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.Methods:Six participants with chronic motor and sensory incomplete SCI who were able to stand for at least 5 min without any form of assistive device performed the VBT, 3 days per week, for a total of 12 sessions. During the training, participants stood on a force platform and were instructed to shift their center of pressure in the indicated directions as represented by a cursor on a monitor. The performance and the rate of learning were monitored throughout the training period. Before and after the program, static and dynamic stability was assessed.Results:All participants showed substantial improvements in the scores, which varied between 236±94 and 130±14% of the initial values for different exercises. The balance performance during training-irrelevant tasks was significantly improved: for example, the area inside the stability zone after the training reached 221±86% of the pre-training values.Conclusion:Postural control can be enhanced in individuals with incomplete SCI using VBT. All participants showed substantial improvements during standing in both game performance and training-irrelevant tasks after the VBT.


Gait & Posture | 2012

Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses.

Dimitry G. Sayenko; Kei Masani; Albert H. Vette; Maria I. Alekhina; Milos R. Popovic; Kimitaka Nakazawa

Evidence of a non-specific effect of balance training on postural control mechanisms suggests that balance training during mechanically unperturbed standing may improve postural corrective responses following external perturbations. The purpose of the present study was to examine kinematics of the trunk as well as muscular activity of the lower leg and paraspinal muscles during postural responses to support-surface rotations after short-term balance training. Experiments were performed in control (n=10) and experimental (n=11) groups. The experimental group participated in the 3-day balance training program. During the training, participants stood on a force platform and were instructed to voluntarily shift their center of pressure in indicated directions as represented by a cursor on a monitor. Postural perturbation tests were executed before and after the training period: the slow and fast 10° dorsiflexions were induced at angular velocities of approximately 50°s(-1) and 200°s(-1), respectively. In the experimental group, the amplitude of the trunk displacements during slow and fast perturbations was up to 33.4% and 26.7% lower, respectively, following the training. The magnitude of the muscular activity was reduced in both the early and late components of the response. The kinematic parameters and muscular responses did not change in the control group. The results suggest that balance training during unperturbed standing has the potential to improve postural corrective responses to unexpected balance perturbation through (1) improved neuromuscular coordination of the involved muscles and (2) adaptive neural modifications on the spinal and cortical levels facilitated by voluntary activity.


Medical Engineering & Physics | 2010

Posturographic measures in healthy young adults during quiet sitting in comparison with quiet standing.

Albert H. Vette; Kei Masani; Vivian W. Sin; Milos R. Popovic

Measures of postural steadiness - known as posturography - are commonly used for balance assessment during quiet standing. Although quiet sitting balance may be studied via posturography as well, this has not been done to date. As such, the purpose of this study was to characterize the posturography during quiet sitting in comparison with quiet standing and to provide a benchmark for future studies investigating differences in balance regulation and execution. Twelve young and healthy people agreed to quietly sit and stand on a force platform with their eyes open and closed. For each condition, one trial of 2 min was executed and the anterior-posterior, medial-lateral, and resultant distance fluctuations of the bodys center of pressure (COP) were calculated. Finally, time-domain, frequency-domain, and stabilogram diffusion function (SDF) measures were identified and compared for all COP time series. The results consistently indicate that, for quiet sitting, the body sway size and velocity were smaller and the power-weighted average frequency larger than for quiet standing. Moreover, the SDF analysis revealed that quiet sitting shows fewer drifts over short time intervals, but also fewer controlled adjustments in the longer term to bring the system back to equilibrium. The observed differences can be partially explained by biomechanical and dynamic differences of the body portions that are in motion during quiet sitting and standing. The SDF analysis suggests, however, that also the balance control strategies are not identical. These findings may be especially useful for the assessment of sitting balance and the development of novel balance rehabilitation techniques and assistive devices.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2010

Neural-Mechanical Feedback Control Scheme Generates Physiological Ankle Torque Fluctuation During Quiet Stance

Albert H. Vette; Kei Masani; Kimitaka Nakazawa; Milos R. Popovic

We have recently demonstrated in simulations and experiments that a proportional and derivative (PD) feedback controller can regulate the active ankle torque during quiet stance and stabilize the body despite a long sensory-motor time delay. The purpose of the present study was to: 1) model the active and passive ankle torque mechanisms and identify their contributions to the total ankle torque during standing and 2) investigate whether a neural-mechanical control scheme that implements the PD controller as the neural controller can successfully generate the total ankle torque as observed in healthy individuals during quiet stance. Fourteen young subjects were asked to stand still on a force platform to acquire data for model optimization and validation. During two trials of 30 s each, the fluctuation of the body angle, the electromyogram of the right soleus muscle, and the ankle torque were recorded. Using these data, the parameters of: 1) the active and passive torque mechanisms (Model I) and 2) the PD controller within the neural-mechanical control scheme (Model II) were optimized to achieve potential matching between the measured and predicted ankle torque. The performance of the two models was finally validated with a new set of data. Our results indicate that not only the passive, but also the active ankle torque mechanism contributes significantly to the total ankle torque and, hence, to body stabilization during quiet stance. In addition, we conclude that the proposed neural-mechanical control scheme successfully mimics the physiological control strategy during quiet stance and that a PD controller is a legitimate model for the strategy that the central nervous system applies to regulate the active ankle torque in spite of a long sensory-motor time delay.


Muscle & Nerve | 2009

Differential effects of plantar cutaneous afferent excitation on soleus stretch and H-reflex

Dimitry G. Sayenko; Albert H. Vette; Hiroki Obata; Maria I. Alekhina; Masami Akai; Kimitaka Nakazawa

Previous studies have demonstrated that plantar cutaneous afferents can adjust motoneuron excitability, which may contribute significantly to the control of human posture and locomotion. However, the role of plantar cutaneous afferents in modulating the excitability of stretch and H‐reflex with respect to the location of their excitation remains unclear. In the present study, it was hypothesized that electrical stimulation delivered to the sole of the foot might be followed by modulation of spinal excitability that depends on: (1) the stimulation location and (2) the reflex studied. In these experiments, conditioned and unconditioned stretch and H‐reflexes were evoked in 16 healthy subjects in a seated position. Both reflexes were conditioned by non‐noxious electrical plantar cutaneous afferent stimulation at two different sites, the heel and metatarsal regions, at four different conditioning–test (CT) intervals. The conditioning stimulation delivered to the heel caused a significant facilitation of the soleus stretch reflex for all CT intervals, whereas the soleus H‐reflex had significant facilitation only at CT interval of 50 ms and significant inhibition at longer CT intervals. Stimulation delivered to the metatarsal region, however, resulted mainly in reduced stretch and H‐reflex sizes. This study extends the reported findings on the contribution of plantar cutaneous afferents within spinal interneuron reflex circuits as a function of their location and the reflex studied. Muscle Nerve, 2008

Collaboration


Dive into the Albert H. Vette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milos R. Popovic

Toronto Rehabilitation Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bimal Lakhani

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge