Albert Hagelgans
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albert Hagelgans.
Experimental Cell Research | 2009
Mario Menschikowski; Albert Hagelgans; Graeme Eisenhofer; Gabriele Siegert
The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), but not interferon-gamma and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1beta and TNF-alpha correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-l-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1beta and TNF-alpha, and downstream by MAP kinase signaling pathways and metalloproteinases.
Biochimica et Biophysica Acta | 2001
Andrey Y. Abramov; Maria Zamaraeva; Albert Hagelgans; Rustam R Azimov; Oleg V. Krasilnikov
Five sesquiterpene alcohol esters of the carotane series, from plants of the genus Ferula, were investigated with regard to their capacity to modify the ion permeability of both planar lipid bilayers and mitochondria. These compounds are subdivided into two structural groups that differ in their effects on membrane permeability. Complex esters of sesquiterpene alcohols with aliphatic acids, which constituted the first group (lapidin and lapiferin), do not possess ionophoric properties. The second group comprised complex esters of sesquiterpene alcohols with aromatic acids (ferutinin, tenuferidin and ferutidin), all of which increase cation permeability of lipid bilayers and mitochondria in a dose-dependent manner. A pronounced selectivity of the terpenoid-modified membranes for divalent cations versus monovalent cations was found. Evidence of a carrier mechanism for terpenoid-induced ion transport is demonstrated. A tentative complex composed of a divalent cation with two molecules of membrane-active terpenoid is proposed.
Cell Calcium | 1997
Maria Zamaraeva; Albert Hagelgans; Andrey Y. Abramov; Vadim I. Ternovsky; Petr G. Merzlyak; Boedjan A. Tashmukhamedov; Ashraf I. Saldkhodzjaev
The influence of the natural terpenoid ferutinin (4-oxy-6-(4-oxybenzoyloxy) dauc-8,9-en), isolated from the plant Ferula tenuisecta, on ion permeability of biological and artificial membranes was investigated. It was shown that ferutinin, in the concentration range 1-50 microM, increases the permeability of thymocytes, mitochondria, sarcoplasmic reticulum, liposomes and bilayer lipid membranes (BLM) for Ca2+. Ferutinin establishes a transmembrane potential in BLM equal to the Nernsts potential. The permeability ratio for Na+/Ca2+ is 0.41. The dependence of BLM conductivity on ferutinin concentration is linear. The stoichiometry of the ferutinin:Ca2+ complex is 2, assuming the formation of a structure with participation of two terpenoid molecules and one Ca2+ ion.
BMC Cancer | 2012
Mario Menschikowski; Uwe Platzbecker; Albert Hagelgans; Margot Vogel; Christian Thiede; Claudia Schönefeldt; Renate Lehnert; Graeme Eisenhofer; Gabriele Siegert
BackgroundThe M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia.MethodsSites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA.ResultsExpression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia.ConclusionsThe study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis.
Thrombosis Research | 2010
Mario Menschikowski; Albert Hagelgans; Graeme Eisenhofer; Oliver Tiebel; Gabriele Siegert
The level of thrombomodulin (TM) on cell surfaces reflects its biosynthesis, intracellular turnover, proteolytic cleavage, and release in soluble form (sTM). In the present study we examined the mechanisms mediating and regulating sTM release. Inducers of endothelial protein C receptor (EPCR) shedding, such as proinflammatory cytokines, phorbol ester, and ionomycin did not affect sTM release from human umbilical endothelial cells (HUVECs). In contrast, several natural and synthetic reducing compounds (i.e., glutathione, dihydrolipoic acid, homocysteine, N-acetyl-L-cysteine, dithiothreitol, and non-thiol cell-impermeable reductant, tris-(2-carboxyethyl)phosphine), but not oxidized glutathione or alpha-lipoic acid effectively up-regulated the release of sTM in endothelial cells. In addition, the direct activator of metalloproteases, 4-aminophenylmercuric acetate (APMA), was an effective inducer of TM shedding. Considerable inhibition of protein C activation was found with APMA, which is consistent with the effects of this agent on TM shedding. In addition to metalloproteases, serine proteases were shown by pharmacological inhibition studies to be involved in a similar degree in basal sTM release; however, serine proteases seem preferentially to be involved in thiol-induced TM proteolytic processing. From comparisons of non-thiol containing synthetic substrate with human recombinant TM it was demonstrated that disulfide bonds within TM are most likely modified by thiols making TM more susceptible to serine protease-mediated cleavage. In summary, the study shows that the extracellular redox state plays a crucial role in the regulation of TM shedding in HUVECs thereby offering new strategies to interfere with diminished activation of protein C during inflammatory diseases.
Inflammation | 2012
Mario Menschikowski; Albert Hagelgans; Susanne Fuessel; Olga A. Mareninova; Volker Neumeister; Manfred P. Wirth; Gabriele Siegert
Secreted group IIA phospholipase A2 (sPLA2-IIA) is markedly up-regulated in human prostate cancer (PCa) specimens and in some PCa-derived cell lines, indicating an important role of this enzyme in tumourigenesis. In this study, we measured levels of sPLA2-IIA, C-reactive protein (CRP), and prostate-specific antigen (PSA) in serum samples obtained from patients with benign prostatic hyperplasia (BPH) and with PCa of different stages. We found that serum levels of sPLA2-IIA and CRP in BPH and PCa patients were significantly elevated compared to those of healthy individuals, but the concentrations of these inflammatory biomarkers did not differ between patients with BPH or PCa. Furthermore, serum levels of sPLA2-IIA correlated with concentrations of CRP, but not with PSA, Gleason grade or tumour stage. In conclusion, these findings suggest that cancer-related changes are not exclusive factors contributing to elevated serum sPLA2-IIA levels and emphasize the utility of sPLA2-IIA as a circulating marker of inflammation in patients with BPH and PCa.
FEBS Letters | 2004
Mario Menschikowski; Albert Hagelgans; Ute Hempel; Gabriele Siegert
The present study shows that the IFN‐γ‐mediated upregulation of secretory phospholipase A2 of group IIA (sPLA2‐IIA) in HASMC and HepG2 cells is synergistically increased after simultaneous inhibition of glycogen synthase kinase‐3β (GSK‐3β) by indirubin‐3′‐monoxime, 5‐iodo or AR‐A014418. The effect of GSK‐3β inhibition was dose‐ and time‐dependent and can be further augmented by its concomitant incubation with Clostridium difficile toxin B, an inhibitor of small Rho proteins, or H‐1152, an inhibitor of Rho‐associated kinase. Using AG‐490 and caffeic acid phenethyl ester (CAPE), it is further demonstrated that the effect of GSK‐3β inhibition on sPLA2‐IIA expression depends on Janus kinase‐2 and NF‐κB‐signaling.
Cancer Cell International | 2011
Mario Menschikowski; Albert Hagelgans; Oliver Tiebel; Ludwig Klinsmann; Graeme Eisenhofer; Gabriele Siegert
BackgroundIncreasing evidences show that beyond its role in coagulation, endothelial protein C receptor (EPCR) interferes with carcinogenesis. Pro-carcinogenic effects of EPCR were linked with a raised generation of activated protein C (aPC) and anti-apoptotic signalling. This study was carried out to analyze the expression, cell surface exposition, and shedding of EPCR in normal and malignant prostate cell lines.ResultsEPCR expression is up-regulated both at the mRNA and protein levels in invasive prostate DU-145 and PC-3 cells in comparison to normal prostate epithelial cells (PrEC) and less-invasive LNCaP cells. Release of soluble EPCR (sEPCR) is induced by 12-myristate 13-acetate, ionomycin, H2O2, and disruptor of lipid rafts in PrEC, DU-145, and PC-3 cells. Furthermore, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not interleukin-6 or interferon-γ increase sEPCR release. In LNCaP cells, neither pharmacological agents nor IL-1β or TNF-α result in a significant increase of sEPCR release. The effects of IL-1β and TNF-α on EPCR shedding in DU-145 cells are mediated by MEK/ERK 1/2, JNK, and p38 MAPK signalling cascades. In PC-3 cells, however, the MEK/ERK 1/2 pathway is down-regulated and incubation with cytokines did not elevate the phosphorylated ERK-1/2 fraction as in the case of DU-145 cells. Treatment with 4-aminophenylmercuric acetate (APMA), an activator of metalloproteases, causes a disproportionately large increase of sEPCR release in DU-145 and PC-3 cells, compared to PrEC and LNCaP cells. Finally, an increased release of sEPCR mediated by APMA treatment is shown to be connected with reduced generation of activated protein C indicating the functionality of EPCR in these cells.ConclusionsThe study demonstrates a number of substantial differences in expression and shedding of EPCR in prostate cancer cell lines in comparison with normal cells that may be relevant for understanding the role of this receptor in carcinogenesis.
BMC Cancer | 2015
Mario Menschikowski; Albert Hagelgans; Brit Nacke; Carsten Jandeck; Olga Sukocheva; Gabriele Siegert
BackgroundIt has recently been proposed that the M-type phospholipase A2 receptor (PLA2R1) acts as a tumour suppressor in certain malignancies including mammary cancer. Considering that DNA methylation is an important regulator of gene transcription during carcinogenesis, in the current study we analyzed the PLA2R1 expression, PLA2R1 promoter methylation, and selected micro RNA (miRNA) levels in normal human mammary epithelial cells (HMEC) and cancer cell lines.MethodsLevels of PLA2R1 and DNA methyltransferases (DNMT) specific mRNA were determined using real-time RT-PCR. Methylation specific-high resolution melting (MS-HRM) analysis was utilized to quantify the methylation degree of selected CpG sites localized in the promoter region of the PLA2R1 gene. Expression of miRNA was tested using miScript Primer Assay system.ResultsNearly complete methylation of the analyzed PLA2R1 promoter region along with PLA2R1 gene silencing was identified in MDA-MB-453 mammary cancer cells. In MCF-7 and BT-474 mammary cancer cell lines, a higher DNA methylation degree and reduced PLA2R1 expression were found in comparison with those in normal HMEC. Synergistic effects of demethylating agent (5-aza-2′-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on PLA2R1 transcription in MDA-MB-453 cells confirmed the importance of DNA methylation and histone modification in the regulation of the PLA2R1 gene expression in mammary cells. Furthermore, significant positive correlation between the expression of DNMT1 and PLA2R1 gene methylation and negative correlation between the cellular levels of hsa-mir-141, −181b, and -181d-1 and the expression of PLA2R1 were identified in the analyzed cells. Analysis of combined z-score of miR-23b, −154 and -302d demonstrated a strong and significant positive correlation with PLA2R1 expression.ConclusionsOur data indicate that (i) PLA2R1 expression in breast cancer cells is controlled by DNA methylation and histone modifications, (ii) hypermethylation of the PLA2R1 promoter region is associated with up-regulation of DNMT1, and (iii) hsa-miR-23b, −154, and −302d, as well as hsa-miR-141, −181b, and −181d-1 are potential candidates for post-transcriptional regulation of PLA2R1 expression in mammary cancer cells.
Tumor Biology | 2016
Mario Menschikowski; Albert Hagelgans; Brit Nacke; Carsten Jandeck; Olga A. Mareninova; Liana Asatryan; Gabriele Siegert
Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = −0.697; p = 0.01). The effects of demethylating agent (5-aza-2′-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in downregulation of GV-PLA2 expression in cancer cells.