Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Hertzog is active.

Publication


Featured researches published by Albert Hertzog.


Journal of Climate | 2013

A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models

Marvin A. Geller; M. Joan Alexander; Peter T. Love; Julio T. Bacmeister; M. Ern; Albert Hertzog; Elisa Manzini; Peter Preusse; Kaoru Sato; Adam A. Scaife; Tiehan Zhou

Forthefirsttime,aformalcomparisonismadebetweengravitywavemomentumfluxesinmodelsandthose derivedfromobservations. Althoughgravitywavesoccuroverawiderangeofspatialandtemporalscales,the focusofthispaperisonscalesthatarebeingparameterizedinpresentclimatemodels,sub-1000-kmscales.Only observational methodsthatpermitderivationofgravitywavemomentumfluxesoverlargegeographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration bal- loons,andhigh-vertical-resolutionradiosondedata.Themodelsdiscussedincludetwohigh-resolutionmodels in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations, MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations in- dicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.


Journal of the Atmospheric Sciences | 2008

Estimation of Gravity Wave Momentum Flux and Phase Speeds from Quasi-Lagrangian Stratospheric Balloon Flights. Part II: Results from the Vorcore Campaign in Antarctica

Albert Hertzog; Gillian Boccara; R. A. Vincent; Francois Vial; Philippe Cocquerez

Abstract The stratospheric gravity wave field in the Southern Hemisphere is investigated by analyzing observations collected by 27 long-duration balloons that flew between September 2005 and February 2006 over Antarctica and the Southern Ocean. The analysis is based on the methods introduced by Boccara et al. in a companion paper. Special attention is given to deriving information useful to gravity wave drag parameterizations employed in atmospheric general circulation models. The balloon dataset is used to map the geographic variability of gravity wave momentum fluxes in the lower stratosphere. This flux distribution is found to be very heterogeneous with the largest time-averaged value (28 mPa) observed above the Antarctic Peninsula. This value exceeds by a factor of ∼10 the overall mean momentum flux measured during the balloon campaign. Zonal momentum fluxes were predominantly westward, whereas meridional momentum fluxes were equally northward and southward. A local enhancement of southward flux is ne...


Journal of the Atmospheric Sciences | 2012

On the Intermittency of Gravity Wave Momentum Flux in the Stratosphere

Albert Hertzog; M. Joan Alexander; Riwal Plougonven

AbstractIn this article, long-duration balloon and spaceborne observations, and mesoscale numerical simulations are used to study the intermittency of gravity waves in the lower stratosphere above Antarctica and the Southern Ocean; namely, the characteristics of the gravity wave momentum-flux probability density functions (pdfs) obtained with these three datasets are described. The pdfs consistently exhibit long tails associated with the occurrence of rare and large-amplitude events. The pdf tails are even longer above mountains than above oceanic areas, which is in agreement with previous studies of gravity wave intermittency in this region. It is moreover found that these rare, large-amplitude events represent the main contribution to the total momentum flux during the winter regime of the stratospheric circulation. In contrast, the wave intermittency significantly decreases when stratospheric easterlies develop in late spring and summer. It is also shown that, except above mountainous areas in winter, ...


Bulletin of the American Meteorological Society | 2010

The Concordiasi Project in Antarctica

Florence Rabier; Aurélie Bouchard; Eric Brun; Alexis Doerenbecher; Stéphanie Guedj; Vincent Guidard; Fatima Karbou; V.-H. Peuch; Laaziz El Amraoui; Dominique Puech; Christophe Genthon; Ghislain Picard; Michael Town; Albert Hertzog; F. Vial; Philippe Cocquerez; Stephen A. Cohn; Terry Hock; Jack Fox; Hal Cole; David B. Parsons; Jordan G. Powers; Keith Romberg; Joseph VanAndel; Terry Deshler; J. L. Mercer; Jennifer S. Haase; Linnea M. Avallone; Lars Eriks Kalnajs; C. Roberto Mechoso

The Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows: To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the under understanding of the Earth system by examining the interactions between Antarctica and lower latitudes. To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techni...


Journal of Atmospheric and Oceanic Technology | 2007

Stratéole/Vorcore—Long-duration, Superpressure Balloons to Study the Antarctic Lower Stratosphere during the 2005 Winter

Albert Hertzog; Philippe Cocquerez; René Guilbon; Jean-Noël Valdivia; Stephanie Venel; Claude Basdevant; Gillian Boccara; Jérôme Bordereau; Bernard Brioit; F. Vial; Alain Cardonne; Alain Ravissot; Éric Schmitt

Abstract In September and October 2005, the Strateole/Vorcore campaign flew 27 superpressure balloons from McMurdo, Antarctica, into the stratospheric polar vortex. Long-duration flights were successfully achieved, 16 of those flights lasting for more than 2 months. Most flights were terminated because they flew out of the authorized flight domain or because of energy shortage in the gondola. The atmospheric pressure (1-Pa precision) was measured every minute during the flights, whereas air temperature observations (0.25-K accuracy) and balloon positions (absolute GPS observations, 10-m accuracy) were obtained every 15 min. Fifteen-minute-averaged horizontal velocities of the wind were deduced from the successive balloon positions with a corresponding accuracy ≲0.1 m s−1. The collected dataset (more than 150 000 independent observations) provides a thorough high-resolution sampling of the polar lower stratosphere in the Southern Hemisphere from its wintertime state up to the establishment of the summer ci...


Geophysical Research Letters | 2002

Quasi‐Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near‐inertial waves

Albert Hertzog; F. Vial; Carlos R. Mechoso; Claude Basdevant; Philippe Cocquerez

[1] In March 2001, three superpressure balloons were launched from Kiruna, Sweden (67.9°N, 21.1°E). The balloons drifted for several weeks in the stratospheric polar vortex at about 19 km. The corresponding trajectories exhibit cycloid-like patterns due to the presence of near-inertial waves. Consistently, it is found that the intrinsic-frequency spectra of the horizontal velocity components are enhanced around the inertial frequency in reference to the generally assumed power-law distribution. A large spectral gap is also found between gravity waves and Rossby waves in the polar stratosphere, in contrast to the continuum found in the equatorial lower stratosphere.


Journal of the Atmospheric Sciences | 2008

Estimation of Gravity Wave Momentum Flux and Phase Speeds from Quasi-Lagrangian Stratospheric Balloon Flights. Part I: Theory and Simulations

Gillian Boccara; Albert Hertzog; R. A. Vincent; Francois Vial

A methodology for estimating gravity wave characteristics from quasi-Lagrangian observations provided by long-duration, superpressure balloon flights in the stratosphere is reviewed. Wavelet analysis techniques are used to detect gravity wave packets in observations of pressure, temperature, and horizontal velocity. An emphasis is put on the estimation of gravity wave momentum fluxes and intrinsic phase speeds, which are generally poorly known on global scales in the atmosphere. The methodology is validated using Monte Carlo simulations of time series that mimic the balloon measurements, including the uncertainties associated with each of the meteorological parameters. While the azimuths of the wave propagation direction are accurately retrieved, the momentum fluxes are generally slightly underestimated, especially when wave packets overlap in the time–frequency domain, or for short-period waves. A proxy is derived to estimate by how much momentum fluxes are reduced by the analysis. Retrievals of intrinsic phase speeds are less accurate, especially for low phase speed waves. A companion paper (Part II) implements the methodology to observations gathered during the Vorcore campaign that took place in Antarctica between September 2005 and February 2006.


Journal of Geophysical Research | 2014

Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere

Aurélien Podglajen; Albert Hertzog; Riwal Plougonven; Nedjeljka Žagar

The accuracy of horizontal winds and temperature in the equatorial lower stratosphere is evaluated in different (re)analyses (European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, ERA Interim, and Modern-Era Retrospective Analysis for Research and Applications) using an independent data set collected at low latitudes during long-duration balloon flights in early 2010. The three analyzed wind products are found significantly less accurate than in the extratropics, with periods of ≳10m/sdisagreement with the observations lasting several days. To highlight the dynamical context in which the major disagreement events occur, case studies are carried out. The events are shown to be related to an improper representation of large-scale equatorial Kelvin and Yanai wave packets with vertical wavelengths smaller than 5 km. Such events can induce large errors on trajectories computed with analyzed winds relatively to the actual (balloon) trajectory: 4000 km separation after 5 days of calculation. Reasons for analyses inaccuracy are discussed. The vertical resolution of the underlying model likely plays a role, but the main factor responsible for deficiencies appears to be the lack of wind observations. Indeed, errors in analyzed winds during the campaign have a strong longitudinal structure, with root-mean-square errors twice as large over the Indian Ocean and western Pacific, poorly covered by radiosounding stations, as over the Maritime Continent or South America. For the ECMWF analysis, this structure mirrors that of the analysis increments, which have largest amplitudes over observed regions. We argue that the reported events are more likely to happen during maximum shear phases of the quasi-biennial oscillation.


Journal of the Atmospheric Sciences | 2015

Comparison of Gravity Waves in the Southern Hemisphere Derived from Balloon Observations and the ECMWF Analyses

Valérian Jewtoukoff; Albert Hertzog; Riwal Plougonven; Alvaro de la Cámara; François Lott

AbstractThe increase of spatial resolution allows the ECMWF operational model to explicitly resolve a significant portion of the atmospheric gravity wave (GW) field, but the realism of the simulated GW field in the ECMWF analyses still needs to be precisely evaluated. Here the authors use data collected during the Concordiasi stratospheric balloon campaign to assess the representation of GWs in the ECMWF analyses over Antarctica and the Southern Ocean in spring 2010. The authors first compare the balloonborne GW momentum fluxes with those in ECMWF analyses throughout the campaign and find a correct agreement of the geographical and seasonal patterns. However, the authors also note that ECMWF analyses generally underestimate the balloon fluxes by a factor of 5, which may be essentially due to the spatial truncation of the ECMWF model. Intermittency of wave activity in the analyses and observations are found comparable. These results are confirmed on two case studies dealing with orographic and nonorographi...


Journal of Geophysical Research | 2014

Intermittency in a stochastic parameterization of nonorographic gravity waves

A. de la Cámara; François Lott; Albert Hertzog

A multiwave stochastic parameterization of nonorographic gravity waves (GWs), representing GWs produced by convection and a background of GWs in the midlatitudes, is tuned and tested against momentum fluxes derived from long-duration balloon flights. The tests are done offline using data sets corresponding to the Southern Ocean during the Concordiasi campaign in 2010. We also adopt the limiting constraint that the drag produced by the scheme resembles that produced by a highly tuned spectral GW parameterization, the so-called Hines scheme. Our results show that the parameterization can reproduce the momentum flux intermittency measured during the campaign, which is relevant since it strongly impacts on the vertical distribution of the GW drag. We also show that, at the altitude of the balloon flights, the momentum flux intermittency is in good part due to the GW sources: filtering by the background winds only becomes effective at much higher altitude. These results are based on bulk formulae for the GW momentum flux that could be used to replace our background GWs by GWs produced by fronts. Finally, the GW energy spectra built out of the stochastic scheme by averaging over a large ensemble of realizations are comparable to the classical vertical spectra of GWs, used today in globally spectral schemes. This indicates that multiwave and spectral schemes can be reconciled once a stochastic approach is used.

Collaboration


Dive into the Albert Hertzog's collaboration.

Top Co-Authors

Avatar

Riwal Plougonven

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Claude Basdevant

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

F. Vial

École Polytechnique

View shared research outputs
Top Co-Authors

Avatar

Philippe Cocquerez

Centre National D'Etudes Spatiales

View shared research outputs
Top Co-Authors

Avatar

Francois Vial

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge