Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert M. Brouwer is active.

Publication


Featured researches published by Albert M. Brouwer.


Pure and Applied Chemistry | 2011

Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report)

Albert M. Brouwer

The use of standards for the measurement of photoluminescence quantum yields (QYs) in dilute solutions is reviewed. Only three standards can be considered well established. Another group of six standards has been investigated by several independent researchers. A large group of standards is frequently used in recent literature, but the validity of these is less certain. The needs for future development comprise: (i) confirmation of the validity of the QY values of many commonly used standard materials, preferably in the form of SI traceable standards; (ii) extension of the set of standard materials to the UV and near-IR spectral ranges; and (iii) good standards or robust protocols for the measurements of low QYs.


Biophysical Journal | 1994

Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila.

Wouter D. Hoff; I.H.M. van Stokkum; H.J. van Ramesdonk; M. E. Van Brederode; Albert M. Brouwer; J. C. Fitch; T. E. Meyer; R. van Grondelle; Klaas J. Hellingwerf

The photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila was examined by time-resolved difference absorption spectroscopy in the wavelength range of 300-600 nm. Both time-gated spectra and single wavelength traces were measured. Global analysis of the data established that in the time domain between 5 ns and 2 s only two intermediates are involved in the room temperature photocycle of PYP, as has been proposed before (Meyer T.E., E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Biochemistry. 26:418-423; Meyer, T. E., G. Tollin, T. P. Causgrove, P. Cheng, and R. E. Blankenship. 1991. Biophys. J. 59:988-991). The first, red-shifted intermediate decays biexponentially (60% with tau = 0.25 ms and 40% with tau = 1.2 ms) to a blue-shifted intermediate. The last step of the photocycle is the biexponential (93% with tau = 0.15 s and 7% with tau = 2.0 s) recovery to the ground state of the protein. Reconstruction of the absolute spectra of these photointermediates yielded absorbance maxima of about 465 and 355 nm for the red- and blue-shifted intermediate with an epsilon max at about 50% and 40% relative to the epsilon max of the ground state. The quantitative analysis of the photocycle in PYP described here paves the way to a detailed biophysical analysis of the processes occurring in this photoreceptor molecule.


Journal of the American Chemical Society | 2008

Three State Redox-Active Molecular Shuttle That Switches in Solution and on a Surface

Giulia Fioravanti; Natalia Haraszkiewicz; Euan R. Kay; Sandra Mendoza; Carlo Bruno; Massimo Marcaccio; Piet G. Wiering; Francesco Paolucci; Petra Rudolf; Albert M. Brouwer; David A. Leigh

Although the desirability of developing synthetic molecular machine systems that can function on surfaces is widely recognized, to date the only well-characterized examples of electrochemically switchable rotaxane-based molecular shuttles which can do so are based on the tetracationic viologen macrocycle pioneered by Stoddart. Here, we report on a [2]rotaxane which features succinamide and naphthalene diimide hydrogen-bonding stations for a benzylic amide macrocycle that can shuttle and switch its net position both in solution and in a monolayer. Three oxidation states of the naphthalene diimide unit can be accessed electrochemically in solution, each one with a different binding affinity for the macrocycle and, hence, corresponding to a different distribution of the rings between the two stations in the molecular shuttle. Cyclic voltammetry experiments show the switching to be both reversible and cyclable and allow quantification of the translational isomer ratios (thermodynamics) and shuttling dynamics (kinetics) for their interconversion in each state. Overall, the binding affinity of the naphthalene diimide station can be changed by 6 orders of magnitude over the three states. Unlike previous electrochemically active amide-based molecular shuttles, the reduction potential of the naphthalene diimide unit is sufficiently positive (-0.68 V) for the process to be compatible with operation in self-assembled monolayers on gold. Incorporating pyridine units into the macrocycle allowed attachment of the shuttles to an acid-terminated self-assembled monolayer of alkane thiols on gold. The molecular shuttle monolayers were characterized by X-ray photoelectron spectroscopy and their electrochemical behavior probed by electrochemical impedance spectroscopy and double-potential step chronoamperometry, which demonstrated that the redox-switched shuttling was maintained in this environment, occurring on the millisecond time scale.


Chemistry: A European Journal | 2014

ortho-Fluoroazobenzenes: Visible Light Switches with Very Long-Lived Z Isomers

Christopher Knie; Manuel Utecht; Fangli Zhao; Hannes Kulla; Sergey A. Kovalenko; Albert M. Brouwer; Peter Saalfrank; Stefan Hecht; David Bléger

Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing σ-electron-withdrawing F atoms ortho to the NN unit leads to both an effective separation of the n→π* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z isomerizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n→π* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Photoisomerization of a rotaxane hydrogen bonding template: Light-induced acceleration of a large amplitude rotational motion

Francesco G. Gatti; Salvador León; Jenny K. Y. Wong; Giovanni Bottari; Andrea Altieri; M. Ángeles F. Morales; Simon J. Teat; Céline Frochot; David A. Leigh; Albert M. Brouwer; Francesco Zerbetto

Establishing methods for controlling aspects of large amplitude submolecular movements is a prerequisite for the development of artificial devices that function through rotary motion at the molecular level. Here we demonstrate that the rate of rotation of the interlocked components of fumaramide-derived [2]rotaxanes can be accelerated, by >6 orders of magnitude, by isomerizing them to the corresponding maleamide [2]rotaxanes by using light.


Science | 2010

Operation mechanism of a molecular machine revealed using time-resolved vibrational spectroscopy

Matthijs R. Panman; Pavol Bodis; Bert H. Bakker; Arthur C. Newton; Euan R. Kay; Albert M. Brouwer; Wybren Jan Buma; David A. Leigh; Sander Woutersen

Not So Random Walk In rotaxanes, a molecular ring can shuttle back and forth between docking sites along an axle. Panman et al. (p. 1255) traced the intricacies of this shuttling motion using vibrational spectroscopy. The kinetics were dominated by the slow scission of hydrogen bonds tying the ring to its starting site. Varying the length of the axle allowed the extraction of relative rates for forward and backward motion once the ring was free: Somewhat surprisingly, forward motion toward the destination site was slightly hindered relative to regression toward the starting place. Measuring the travel of a molecular ring along an axle explains its shuttling motion. Rotaxanes comprise macrocycles that can shuttle between docking stations along an axle. We explored the nanosecond shuttling mechanism by reversing the relative binding affinities of two stations through ultraviolet-induced transient reduction. We monitored the ensuing changes in the CO-stretching bands of the two stations and the shuttling macrocycle by means of an infrared probing pulse. Because hydrogen-bond scission and formation at the initial and final stations led to well-resolved changes in the respective CO-stretch frequencies, the departure and arrival of the macrocycle could be observed separately. We found that the shuttling involves two steps: thermally driven escape from the initial station, followed by rapid motion along the track ending either at the initial or final station. By varying the track’s length, we found that the rapid motion approximates a biased one-dimensional random walk. However, surprisingly, the direction of the overall motion is opposite that of the bias.


Journal of Chemical Physics | 1989

The lowest triplet state of 1,3,5-hexatrienes : Quantum chemical force field calculations and experimental resonance Raman spectra

Fabrizia Negri; Giorgio Orlandi; Albert M. Brouwer; Frans W. Langkilde; Robert Wilbrandt

Theoretical and Raman spectroscopic studies are presented of E and Z‐1,3,5‐hexatriene and their 3,4‐ and 2,5‐dideuteriated analogs in ground and excited triplet states. The T1 potential energy surface is calculated from extended SCF‐LCAO‐MO‐CI theory. Energy minima and equilibrium geometries are determined in T1 . Frequencies and normal modes of vibration are calculated for the minima of the T1 and S0 states. Energies of higher triplet levels are computed and oscillator strengths for the transitions from T1 to Tn are determined. The displacements in equilibrium geometries between the T1 and the Tn level corresponding to the strongest T1→Tn transitions are calculated and are used to estimate the intensities of the resonance Raman spectra of the T1 state under the assumption of a predominant Franck–Condon scattering mechanism. The results indicate that the planar E and Z forms of hexatriene and its analogs are the only ones contributing substantially to the T1→Tn absorption and the T1 resonance Raman spectr...


Chemical Communications | 2013

Förster resonance energy transfer by formation of a mechanically interlocked [2]rotaxane

Tomoki Ogoshi; Daiki Yamafuji; Tada-aki Yamagishi; Albert M. Brouwer

A [2]rotaxane has been constructed from a di-pyrene appended pillar[5]arene wheel, a pyridinium axle, and a perylene stopper. It shows efficient Förster resonance energy transfer from pyrene to perylene by formation of a mechanically interlocked [2]rotaxane.


Journal of Materials Chemistry | 2011

Triazole–pyridine ligands: a novel approach to chromophoric iridium arrays

Michal Juríček; Marco Felici; P. Contreras-Carballada; Jan Lauko; Sandra Rodríguez Bou; Paul H. J. Kouwer; Albert M. Brouwer; Alan E. Rowan

We describe a novel modular approach to a series of luminescent iridium complexes bearing triazole–pyridine-derived ligands that were conveniently prepared by using “click” chemistry. One, two or three triazole–pyridine units were effectively built into the heteroaromatic macromolecule using versatile acetylene- and azide-functionalised precursors. Using this approach, a series of iridium-derived molecules, that differ in the number of iridium centres, the structural characteristics of the cyclometalating ligand and the backbone, were synthesised. The preliminary photophysical properties of the prepared complexes indicate that there is only limited interaction (through space or through the backbone) between the iridium centres within one molecule and that each iridium centre retains its individual properties. The results show that our approach can be generally applied towards covalently linked multichromophoric systems with potential application, for instance, in the design and preparation of tunable light emitters. As a demonstration of this concept, a single molecule white-light emitter, constructed from two iridium centres (yellow emission) and a fluorene unit (blue emission), is presented.


Journal of Organic Chemistry | 2010

Ultrafast Light-Driven Nanomotors Based on an Acridane Stator

Artem Kulago; Emile M. Mes; Martin Klok; Auke Meetsma; Albert M. Brouwer; Ben L. Feringa

A series of molecular motors featuring a symmetrical acridane stator is reported. Photochemical and thermal isomerization experiments confirm that this stator, in combination with a thiopyran rotor, results in molecular rotary motion in which the rate-determining thermal helix inversion proceeds effectively only at temperatures above 373 K. The introduction of a cyclopentanylidene rotor unit results in a decrease in steric hindrance with respect to the stator, and as a consequence, a 10(12)-fold increase in the rate of thermal helix inversion is observed. Nanosecond transient absorption spectroscopy allows for the thermal processes to be followed accurately at ambient temperature. The rotary motor is shown to be able to operate at 0.5 MHz rotational frequencies under optimal conditions.

Collaboration


Dive into the Albert M. Brouwer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Leigh

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Robert Wilbrandt

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge