Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert M. Maguire is active.

Publication


Featured researches published by Albert M. Maguire.


The New England Journal of Medicine | 2008

Safety and Efficacy of Gene Transfer for Leber’s Congenital Amaurosis

Albert M. Maguire; Francesca Simonelli; Eric A. Pierce; Edward N. Pugh; Federico Mingozzi; Jeannette L. Bennicelli; Sandro Banfi; Kathleen Marshall; Francesco Testa; Enrico Maria Surace; Settimio Rossi; Arkady Lyubarsky; Valder R. Arruda; Barbara A. Konkle; Edwin M. Stone; Junwei Sun; Jonathan B. Jacobs; L. F. Dell'Osso; Richard W. Hertle; Jian Xing Ma; T. Michael Redmond; Xiaosong Zhu; Bernd Hauck; Olga Zelenaia; Kenneth S. Shindler; Maureen G. Maguire; J. Fraser Wright; Nicholas J. Volpe; Jennifer Wellman McDonnell; Alberto Auricchio

Lebers congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary DNA (cDNA) (ClinicalTrials.gov number, NCT00516477 [ClinicalTrials.gov]). Three patients with LCA2 had an acceptable local and systemic adverse-event profile after delivery of AAV2.hRPE65v2. Each patient had a modest improvement in measures of retinal function on subjective tests of visual acuity. In one patient, an asymptomatic macular hole developed, and although the occurrence was considered to be an adverse event, the patient had some return of retinal function. Although the follow-up was very short and normal vision was not achieved, this study provides the basis for further gene therapy studies in patients with LCA.


Nature Genetics | 2001

Gene therapy restores vision in a canine model of childhood blindness

Gregory M. Acland; Gustavo D. Aguirre; Jharna Ray; Qi Zhang; Tomas S. Aleman; Artur V. Cideciyan; Susan E. Pearce-Kelling; Vibha Anand; Yong Zeng; Albert M. Maguire; Samuel G. Jacobson; William W. Hauswirth; Jean Bennett

The relationship between the neurosensory photoreceptors and the adjacent retinal pigment epithelium (RPE) controls not only normal retinal function, but also the pathogenesis of hereditary retinal degenerations. The molecular bases for both primary photoreceptor and RPE diseases that cause blindness have been identified. Gene therapy has been used successfully to slow degeneration in rodent models of primary photoreceptor diseases, but efficacy of gene therapy directed at photoreceptors and RPE in a large-animal model of human disease has not been reported. Here we study one of the most clinically severe retinal degenerations, Leber congenital amaurosis (LCA). LCA causes near total blindness in infancy and can result from mutations in RPE65 (LCA, type II; MIM 180069 and 204100). A naturally occurring animal model, the RPE65−/− dog, suffers from early and severe visual impairment similar to that seen in human LCA. We used a recombinant adeno-associated virus (AAV) carrying wild-type RPE65 (AAV-RPE65) to test the efficacy of gene therapy in this model. Our results indicate that visual function was restored in this large animal model of childhood blindness.


The Lancet | 2009

Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial

Albert M. Maguire; Katherine A. High; Alberto Auricchio; J. Fraser Wright; Eric A. Pierce; Francesco Testa; Federico Mingozzi; Jeannette L. Bennicelli; Gui-shuang Ying; Settimio Rossi; Ann Fulton; Kathleen Marshall; Sandro Banfi; Daniel C. Chung; Jessica I. W. Morgan; Bernd Hauck; Olga Zelenaia; Xiaosong Zhu; Leslie Raffini; Frauke Coppieters; Elfride De Baere; Kenneth S. Shindler; Nicholas J. Volpe; Enrico Maria Surace; Carmela Acerra; Arkady Lyubarsky; T. Michael Redmond; Edwin M. Stone; Junwei Sun; Jenni Fer Uvellman Mcdonnell

BACKGROUND Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Lebers congenital amaurosis. METHODS We assessed the retinal and visual function in 12 patients (aged 8-44 years) with RPE65-associated Lebers congenital amaurosis given one subretinal injection of adeno-associated virus (AAV) containing a gene encoding a protein needed for the isomerohydrolase activity of the retinal pigment epithelium (AAV2-hRPE65v2) in the worst eye at low (1.5 x 10(10) vector genomes), medium (4.8 x 10(10) vector genomes), or high dose (1.5 x 10(11) vector genomes) for up to 2 years. FINDINGS AAV2-hRPE65v2 was well tolerated and all patients showed sustained improvement in subjective and objective measurements of vision (ie, dark adaptometry, pupillometry, electroretinography, nystagmus, and ambulatory behaviour). Patients had at least a 2 log unit increase in pupillary light responses, and an 8-year-old child had nearly the same level of light sensitivity as that in age-matched normal-sighted individuals. The greatest improvement was noted in children, all of whom gained ambulatory vision. The study is registered with ClinicalTrials.gov, number NCT00516477. INTERPRETATION The safety, extent, and stability of improvement in vision in all patients support the use of AAV-mediated gene therapy for treatment of inherited retinal diseases, with early intervention resulting in the best potential gain. FUNDING Center for Cellular and Molecular Therapeutics at the Childrens Hospital of Philadelphia, Foundation Fighting Blindness, Telethon, Research to Prevent Blindness, F M Kirby Foundation, Mackall Foundation Trust, Regione Campania Convenzione, European Union, Associazione Italiana Amaurosi Congenita di Leber, Fund for Scientific Research, Fund for Research in Ophthalmology, and National Center for Research Resources.


Molecular Therapy | 2010

Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration

Francesca Simonelli; Albert M. Maguire; Francesco Testa; Eric A. Pierce; Federico Mingozzi; Jeannette L. Bennicelli; Settimio Rossi; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; T. Michael Redmond; Xiaosong Zhu; Kenneth S. Shindler; Gui-shuang Ying; Carmela Ziviello; Carmela Acerra; J. Fraser Wright; Jennifer Wellman McDonnell; Katherine A. High; Jean Bennett; Alberto Auricchio

The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Lebers congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.


Science Translational Medicine | 2012

AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness

Jean Bennett; Manzar Ashtari; Jennifer Wellman; Kathleen Marshall; Laura Cyckowski; Daniel C. Chung; Sarah McCague; Eric A. Pierce; Yong Chen; Jeannette L. Bennicelli; Xiaosong Zhu; Gui-shuang Ying; Junwei Sun; John Fraser Wright; Alberto Auricchio; Francesca Simonelli; Kenneth S. Shindler; Federico Mingozzi; Katherine A. High; Albert M. Maguire

Repeat administration of gene therapy to the contralateral retina of three congenitally blind patients was safe and resulted in improved vision. Shining a Light with Gene Therapy Gene therapy has great potential for treating certain diseases by providing therapeutic genes to target cells. Administration of a gene therapy vector carrying the RPE65 gene in 12 patients with congenital blindness due to RPE65 mutations led to improvements in retinal and visual function and proved to be a safe and stable procedure. In a follow-up study, the same group of researchers led by Jean Bennett set out to discover whether it would be possible to safely administer the vector and the therapeutic transgene to the contralateral eye of the patients. A big concern was whether the first gene therapy injection might have primed the patients’ immune system to respond to the adeno-associated virus (AAV) vector or the product of the therapeutic transgene that it had delivered. To test the safety and efficacy of a second administration of gene therapy to the second eye, the authors demonstrated that readministration was both safe and effective in animal models. Then, they selected 3 of the original 12 patients and readministered the AAV vector and its RPE65 transgene to the contralateral eye. They assessed safety by evaluating inflammatory responses, immune reactions, and extraocular exposure to the AAV vector. Efficacy was assessed through qualitative and quantitative measures of retinal and visual function including the ability to read letters, the extent of side vision, light sensitivity, the pupillary light reflex, the ability to navigate in dim light, and evidence from neuroimaging studies of cortical activation (which demonstrated that signals from the retina were recognized by the brain). The researchers did not discover any safety concerns and did not identify harmful immune responses to the vector or the transgene product. Before and after comparisons of psychophysical data and cortical responses provided the authors with evidence that gene therapy readministration was effective and mediated improvements in retinal and visual function in the three patients. The researchers report that the lack of immune response and the robust safety profile in this readministration gene therapy study may be due in part to the immune-privileged nature of the eye, and the low dose and very pure preparation of the AAV vector. Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.


Journal of Clinical Investigation | 2008

Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice

Mariacarmela Allocca; Monica Doria; Marco Petrillo; Pasqualina Colella; Maria Garcia-Hoyos; Daniel Gibbs; So Ra Kim; Albert M. Maguire; Tonia S. Rex; Umberto Di Vicino; Luisa Cutillo; Janet R. Sparrow; David S. Williams; Jean Bennett; Alberto Auricchio

Vectors derived from adeno-associated virus (AAV) are promising for human gene therapy, including treatment for retinal blindness. One major limitation of AAVs as vectors is that AAV cargo capacity has been considered to be restricted to 4.7 kb. Here we demonstrate that vectors with an AAV5 capsid (i.e., rAAV2/5) incorporated up to 8.9 kb of genome more efficiently than 6 other serotypes tested, independent of the efficiency of the rAAV2/5 production process. Efficient packaging of the large murine Abca4 and human MYO7A and CEP290 genes, which are mutated in common blinding diseases, was obtained, suggesting that this packaging efficiency is independent of the specific sequence packaged. Expression of proteins of the appropriate size and function was observed following transduction with rAAV2/5 carrying large genes. Intraocular administration of rAAV2/5 encoding ABCA4 resulted in protein localization to rod outer segments and significant and stable morphological and functional improvement of the retina in Abca4(-/-) mice. This use of rAAV2/5 may be a promising therapeutic strategy for recessive Stargardt disease, the most common form of inherited macular degeneration. The possibility of packaging large genes in AAV greatly expands the therapeutic potential of this vector system.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success

Samuel G. Jacobson; Tomas S. Aleman; Artur V. Cideciyan; Alexander Sumaroka; Sharon B. Schwartz; Elizabeth A. M. Windsor; Elias I. Traboulsi; Elise Héon; Steven J. Pittler; Ann H. Milam; Albert M. Maguire; Krzysztof Palczewski; Edwin M. Stone; Jean Bennett

Mutations in RPE65, a gene essential to normal operation of the visual (retinoid) cycle, cause the childhood blindness known as Leber congenital amaurosis (LCA). Retinal gene therapy restores vision to blind canine and murine models of LCA. Gene therapy in blind humans with LCA from RPE65 mutations may also have potential for success but only if the retinal photoreceptor layer is intact, as in the early-disease stage-treated animals. Here, we use high-resolution in vivo microscopy to quantify photoreceptor layer thickness in the human disease to define the relationship of retinal structure to vision and determine the potential for gene therapy success. The normally cone photoreceptor-rich central retina and rod-rich regions were studied. Despite severely reduced cone vision, many RPE65-mutant retinas had near-normal central microstructure. Absent rod vision was associated with a detectable but thinned photoreceptor layer. We asked whether abnormally thinned RPE65-mutant retina with photoreceptor loss would respond to treatment. Gene therapy in Rpe65-/- mice at advanced-disease stages, a more faithful mimic of the humans we studied, showed success but only in animals with better-preserved photoreceptor structure. The results indicate that identifying and then targeting retinal locations with retained photoreceptors will be a prerequisite for successful gene therapy in humans with RPE65 mutations and in other retinal degenerative disorders now moving from proof-of-concept studies toward clinical trials.


Ophthalmology | 2013

Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2.

Francesco Testa; Albert M. Maguire; Settimio Rossi; Eric A. Pierce; Paolo Melillo; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; Carmela Acerra; J. Fraser Wright; Jennifer Wellman; Katherine A. High; Alberto Auricchio; Jean Bennett; Francesca Simonelli

OBJECTIVE The aim of this study was to show the clinical data of long-term (3-year) follow-up of 5 patients affected by Leber congenital amaurosis type 2 (LCA2) treated with a single unilateral injection of adeno-associated virus AAV2-hRPE65v2. DESIGN Clinical trial. PARTICIPANTS Five LCA2 patients with RPE65 gene mutations. METHODS After informed consent and confirmation of trial eligibility criteria, the eye with worse visual function was selected for subretinal delivery of adeno-associated virus (AAV2-hRPE65v2). Subjects were evaluated before and after surgery at designated follow-up visits (1, 2, 3, 14, 30, 60, 90, 180, 270, and 365 days, 1.5 years, and 3 years) by complete ophthalmic examination. Efficacy for each subject was monitored with best-corrected visual acuity, kinetic visual field, nystagmus testing, and pupillary light reflex. MAIN OUTCOME MEASURES Best-corrected visual acuity, kinetic visual field, nystagmus testing, and pupillary light reflex. RESULTS The data showed a statistically significant improvement of best-corrected visual acuity between baseline and 3 years after treatment in the treated eye (P<0.001). In all patients, an enlargement of the area of visual field was observed that remained stable until 3 years after injection (average values: baseline, 1058 deg(2) vs. 3 years after treatment, 4630 deg(2)) and a reduction of the nystagmus frequency compared with baseline at the 3-year time point. Furthermore, a statistically significant difference was observed in the pupillary constriction of the treated eye (P<0.05) compared with the untreated eye in 3 patients at 1- and 3-year time points. No patients experienced serious adverse events related to the vector in the 3-year postinjection period. CONCLUSIONS The long-term follow-up data (3 years) on the 5-patient Italian cohort involved in the LCA2 gene therapy clinical trial clearly showed a stability of improvement in visual and retinal function that had been achieved a few months after treatment. Longitudinal data analysis showed that the maximum improvement was achieved within 6 months after treatment, and the visual improvement was stable up to the last observed time point. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.


Molecular Therapy | 2008

Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer

Jeannette L. Bennicelli; John Fraser Wright; András M. Komáromy; Jonathan B. Jacobs; Bernd Hauck; Olga Zelenaia; Federico Mingozzi; Daniel Hui; Daniel C. Chung; Tonia S. Rex; Zhangyong Wei; Guang Qu; Shangzhen Zhou; Caroline J. Zeiss; Valder R. Arruda; Gregory M. Acland; L. F. Dell'Osso; Katherine A. High; Albert M. Maguire; Jean Bennett

We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs.

Katherine P. Ponder; John R. Melniczek; Lingfei Xu; Margaret A. Weil; Thomas O'Malley; Patricia O'Donnell; Van W. Knox; Gustavo D. Aguirre; Hamutal Mazrier; N. Matthew Ellinwood; Margaret M Sleeper; Albert M. Maguire; Susan W. Volk; Robert L Mango; Jean Zweigle; John H. Wolfe; Mark E. Haskins

Dogs with mucopolysaccharidosis VII (MPS VII) were injected intravenously at 2–3 days of age with a retroviral vector (RV) expressing canine β-glucuronidase (cGUSB). Five animals received RV alone, and two dogs received hepatocyte growth factor (HGF) before RV in an attempt to increase transduction efficiency. Transduced hepatocytes expanded clonally during normal liver growth and secreted enzyme with mannose 6-phosphate. Serum GUSB activity was stable for up to 14 months at normal levels for the RV-treated dogs, and for 17 months at 67-fold normal for the HGF/RV-treated dog. GUSB activity in other organs was 1.5–60% of normal at 6 months for two RV-treated dogs, which was likely because of uptake of enzyme from blood by the mannose 6-phosphate receptor. The body weights of untreated MPS VII dogs are 50% of normal at 6 months. MPS VII dogs cannot walk or stand after 6 months, and progressively develop eye and heart disease. RV- and HGF/RV-treated MPS VII dogs achieved 87% and 84% of normal body weight, respectively. Treated animals could run at all times of evaluation for 6–17 months because of improvements in bone and joint abnormalities, and had little or no corneal clouding and no mitral valve thickening. Despite higher GUSB expression, the clinical improvements in the HGF/RV-treated dog were similar to those in the RV-treated animals. This is the first successful application of gene therapy in preventing the clinical manifestations of a lysosomal storage disease in a large animal.

Collaboration


Dive into the Albert M. Maguire's collaboration.

Top Co-Authors

Avatar

Jean Bennett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Tomas S. Aleman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Wilson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Auricchio

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Marshall

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge