Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Oates is active.

Publication


Featured researches published by Albert Oates.


Soil Research | 2011

Soil carbon dynamics under different cropping and pasture management in temperate Australia: Results of three long-term experiments

Kwong Yin Chan; Mark Conyers; Guangdi Li; Keith Helyar; Graeme Poile; Albert Oates; Idris Barchia

In addition to its important influence on soil quality and therefore crop productivity, soil organic carbon (SOC) has also been identified as a possible C sink for sequestering atmospheric carbon dioxide. Limited data are available on the impact of management practices on the rate of SOC change in agricultural soils in Australia. In this paper, results of three long-term trials (13–25 years) located near Wagga Wagga in temperate Australia were used to assess C dynamics under different tillage and stubble management practices, and under cropping intensities in pasture/crop rotations. Experimental results confirm the importance of management practices and pasture in determining first the steady-state SOC concentrations that are characteristic of given rotations and crop management systems, and second the rates of change of SOC concentrations as they approach steady-state concentrations in agricultural soils of this agro-ecological zone. A long-term crop/pasture experiment at a site with initial high SOC showed that the rate of SOC change in different treatments ranged from –278 to +257 kg C/ha.year over 0–0.3 m soil depth. Under continuous cropping, even under conservation agriculture practices of no-tillage, stubble retention, and crop rotation, the high initial SOC stock (0–0.3 m) present after a long-term pasture phase was, at best, maintained but tended to decrease with increased tillage or stubble burning practices. The effect of tillage was greater than that of stubble management. Increases in SOC were observed only in rotations incorporating a pasture phase. Our results suggest that improved soil nutrient and grazing management of permanent pasture can lead to an increase of 500–700 kg C/ha.year where the initial SOC concentrations are well below steady-state concentrations that could be expected after long periods of improved management. No difference was found between perennial pasture and annual pasture to the depth measured (0–0.3 m). Our results suggest that pasture holds the key to maintaining, and even increasing, SOC under crop/pasture in this environment.


Soil Research | 2010

Soil carbon stocks under different pastures and pasture management in the higher rainfall areas of south-eastern Australia

Kwong Yin Chan; Albert Oates; Guangdi Li; Mark Conyers; Roslyn Prangnell; Graeme Poile; De Liu; Idris Barchia

In Australia, pastures form the basis of the extensive livestock industries and are important components of crop rotation systems. Despite recent interest in the soil carbon sequestration value of pastures in the mitigation of climate change, little information is available on the soil carbon sequestration potential of pastures in New South Wales farming systems. To quantify the soil carbon stocks under different pastures and a range of pasture management practices, a field survey of soil carbon stocks was undertaken in 2007 in central and southern NSW as well as north-eastern Victoria, using a paired-site approach. Five comparisons were included: native v. introduced perennial, perennial v. annual, continuous v. rotational grazing, pasture cropping v. control, and improved v. unimproved pastures. Results indicated a wide range of soil organic carbon (SOC) stocks over 0–0.30 m (22.4–66.3 t C/ha), with little difference when calculated based on either constant soil depth or constant soil mass. Significantly higher SOC stocks were found only as a result of pasture improvement using P application compared with unimproved pastures. In this case, rates of sequestration were estimated to range between 0.26 and 0.72 t C/ha.year, with a mean rate of 0.41 t C/ha.year. Lack of significant differences in SOC stocks for the other pastures and pasture management practice comparisons could be due to inherent problems associated with the paired-site survey approach, i.e. large variability, difficulties in obtaining accurate site history, and the occasional absence of a valid control as well as the likely lower rates of SOC sequestration for these other comparisons. There is a need for scientific long-term trials to quantify the SOC sequestration potential of these other pastures and pasture management practices.


Soil Research | 2011

Comparison of three carbon determination methods on naturally occurring substrates and the implication for the quantification of 'soil carbon'

Mark Conyers; Graeme Poile; Albert Oates; David Waters; Kwong Yin Chan

Accounting for carbon (C) in soil will require a degree of precision sufficient to permit an assessment of any trend through time. Soil can contain many chemically and physically diverse forms of organic and inorganic carbon, some of which might not meet certain definitions of ‘soil carbon’. In an attempt to assess how measurements of these diverse forms of C might vary with analytical method, we measured the C concentration of 26 substrates by three methods commonly used for soil C (Walkley–Black, Heanes, and Leco). The Heanes and Leco methods were essentially equivalent in their capture of organic C, but the Leco method captured almost all of the inorganic C (carbonates, graphite). The Heanes and Walkley–Black methods did not measure carbonates but did measure 92% and 9%, respectively, of the C in graphite. All three of the common soil test procedures measured some proportion of the charcoal and of the other burnt materials. The proportion of common organic substrates (not the carbonates, graphite, or soil) that was C by weight ranged from ~10% to 90% based on the Heanes and Leco data. The proportion of the organic fraction of those same substrates, as measured by loss-on-ignition, that was C by weight ranged from 42% to 100%. The relationship between Walkley–Black C and total C (by Heanes and Leco) showed that Walkley–Black C was a variable proportion of total C for the 26 substrates. Finally, the well-known, apparent artefact in the Cr-acid methods was investigated: dichromate digestion should contain at least 7–10 mg C in the sample or over-recovery of C might be reported. Our observation that common soil C procedures readily measure C in plant roots and shoots, and in burnt stubble, means that there will likely be intra-annual variation in soil C, because avoidance of these fresh residues is difficult. Such apparent intra-annual variation in soil C will make the detection of long-term trends problematic.


Canadian Journal of Soil Science | 2009

Sheep camping influences soil properties and pasture production in an acidic soil of New South Wales, Australia

Yining Niu; Guangdi Li; Lingling Li; K. Yin Chan; Albert Oates

This paper reports sheep camping influences on soil chemical and physical properties, and pasture dry matter (DM) production of an acidic soil on the southwest slopes of New South Wales, Australia. The experiment was conducted in the spring (October-November) of 2005 on a long-term field experimental site after 13 yr of rotational grazing. The factors considered were sheep camping (distance from the camping site), pasture type (perennial vs. annual pastures) and lime application (limed vs. unlimed treatments). Over 13 yr of rotational grazing, significant amounts of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) were deposited near the sheep camping site via the deposition of animal excreta. Total C increased from 32.8 g kg-1 20 m away from the camping site to 41.9 g kg-1 at the camping site in 0-5 cm soil depth. The Colwell P increased from 44.0 to 125.9 mg kg-1 from the non-camping area to the camping site in 0-5 cm soil depth. The most interesting result from the current study is that soil ...


Soil Research | 2016

Tillage does not increase nitrous oxide emissions under dryland canola (Brassica napus L.) in a semiarid environment of south-eastern Australia

Guangdi Li; Mark Conyers; Graeme D. Schwenke; Richard Hayes; De Li Liu; Adam Lowrie; Graeme Poile; Albert Oates; Richard Lowrie

Dryland cereal production systems of south-eastern Australia require viable options for reducing nitrous oxide (N2O) emissions without compromising productivity and profitability. A 4-year rotational experiment with wheat (Triticum aestivum L.)–canola (Brassica napus L.)–grain legumes–wheat in sequence was established at Wagga Wagga, NSW, Australia, in a semiarid Mediterranean-type environment where long-term average annual rainfall is 541mm and the incidence of summer rainfall is episodic and unreliable. The objectives of the experiment were to investigate whether (i) tillage increases N2O emissions and (ii) nitrogen (N) application can improve productivity without increasing N2O emissions. The base experimental design for each crop phase was a split-plot design with tillage treatment (tilled versus no-till) as the whole plot, and N fertiliser rate (0, 25, 50 and 100kgN/ha) as the subplot, replicated three times. This paper reports high resolution N2O emission data under a canola crop. The daily N2O emission rate averaged 0.55g N2O-N/ha.day, ranging between –0.81 and 6.71g N2O-N/ha.day. The annual cumulative N2O-N emitted was 175.6 and 224.3g N2O-N/ha under 0 and 100kgN/ha treatments respectively. There was no evidence to support the first hypothesis that tillage increases N2O emissions, a result which may give farmers more confidence to use tillage strategically to manage weeds and diseases where necessary. However, increasing N fertiliser rate tended to increase N2O emissions, but did not increase crop production at this site.


Crop & Pasture Science | 2010

Effect of gypsum on establishment, persistence and productivity of lucerne and annual pasture legumes on two grey Vertosols in southern New South Wales

Brian Dear; Mark B. Peoples; Richard Hayes; A. D. Swan; Kwong Yin Chan; Albert Oates; Steven Morris; Beverley Orchard

Changes in pasture yield and botanical composition due to gypsum application were examined on Vertosols at two locations of differing soil sodicity, Grogan and Morangarell, in southern New South Wales. Two pasture treatments were examined. One was an annual pasture comprised of 3 annual legumes (2 subterranean clover Trifolium subterraneum L. cultivars, Clare and Riverina, and balansa clover T. michelianum Savi cv. Paradana), while the second treatment consisted of lucerne (Medicago sativa L.) cv. Aquarius sown in a mixture with the same annual legumes. Gypsum had no effect on the establishment or persistence of lucerne at either site. Gypsum increased the number of subterranean clover seedlings present in autumn in annual swards at the more sodic Grogan site in each of the 4 years, but provided no difference when the clover was in a mixture with lucerne. Annual legume seed yields in annual-only swards increased with gypsum by up to 58% at Grogan and 38% at Morangarell. Seed yields of both cultivars of subterranean clover declined as a proportion of the total annual legume seed bank when lucerne was included in the mixture, in contrast to balansa clover (at Grogan) and the naturalised annual legumes, burr medic (M. polymorpha L.) and woolly clover (T. tomentosum L.), which all increased in relative seed yield in the presence of lucerne. Total pasture production at the Grogan site increased with gypsum by up to 15% per annum in annual swards and 36% in lucerne swards depending on the season. Yield responses to gypsum by the lucerne component were observed in 10 of the 13 seasonal yield measurements taken at Grogan. However, total pasture yield and seasonal yields were unaffected by both gypsum and pasture type at the less sodic Morangarell site. It was concluded that sowing a diverse mixture of annual legumes or polycultures was conducive to maintaining productive pastures on these spatially variable soils. Lucerne dried the soil profile (0.15–1.15 m) more than annual pastures at both sites. The combination of gypsum and lucerne enhanced water extraction at depth (0.6–1.15 m) at the Grogan site increasing the size of the dry soil buffer whereas gypsum increased soil water at depth (>0.6 m) under annual swards.


Renewable Agriculture and Food Systems | 2017

Addressing biophysical constraints for Australian farmers applying low rates of composted dairy waste to soil

Richard Hayes; Jeffrey McCormick; Albert Oates; G. J. Poile; Mark Conyers; Matthew Gardner; Andrew J. Price; Patricia O'Keeffe; Guangdi Li

This study examined the response of forage crops to composted dairy waste (compost) applied at low rates and investigated effects on soil health. The evenness of spreading compost by commercial machinery was also assessed. An experiment was established on a commercial dairy farm with target rates of compost up to 5 t ha −1 applied to a field containing millet [ Echinochloa esculenta (A. Braun) H. Scholz] and Pasja leafy turnip ( Brassica hybrid). A pot experiment was also conducted to monitor the response of a legume forage crop (vetch; Vicia sativa L.) on three soils with equivalent rates of compost up to 20 t ha −1 with and without ‘additive blends’ comprising gypsum, lime or other soil treatments. Few significant increases in forage biomass were observed with the application of low rates of compost in either the field or pot experiment. In the field experiment, compost had little impact on crop herbage mineral composition, soil chemical attributes or soil fungal and bacterial biomass. However, small but significant increases were observed in gravimetric water content resulting in up to 22.4 mm of additional plant available water calculated in the surface 0.45 m of soil, 2 years after compost was applied in the field at 6 t ha −1 dried (7.2 t ha −1 undried), compared with the nil control. In the pot experiment, where the soil was homogenized and compost incorporated into the soil prior to sowing, there were significant differences in mineral composition in herbage and in soil. A response in biomass yield to compost was only observed on the sandier and lower fertility soil type, and yields only exceeded that of the conventional fertilizer treatment where rates equivalent to 20 t ha −1 were applied. With few yield responses observed, the justification for applying low rates of compost to forage crops and pastures seems uncertain. Our collective experience from the field and the glasshouse suggests that farmers might increase the response to compost by: (i) increasing compost application rates; (ii) applying it prior to sowing a crop; (iii) incorporating the compost into the soil; (iv) applying only to responsive soil types; (v) growing only responsive crops; and (vi) reducing weed burdens in crops following application. Commercial machinery incorporating a centrifugal twin disc mechanism was shown to deliver double the quantity of compost in the area immediately behind the spreader compared with the edges of the spreading swathe. Spatial variability in the delivery of compost could be reduced but not eliminated by increased overlapping, but this might represent a potential 20% increase in spreading costs.


Soil & Tillage Research | 2007

Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage

G.S. Zhang; Kwong Yin Chan; Albert Oates; D.P. Heenan; Gaobao Huang


Soil & Tillage Research | 2006

Agronomic consequences of tractor wheel compaction on a clay soil

Kwong Yin Chan; Albert Oates; A. D. Swan; Richard Hayes; Brian Dear; Mark B. Peoples


Soil & Tillage Research | 2011

Soil physical qualities in an Oxic Paleustalf under different tillage and stubble management practices and application of S theory

Lingling Li; K. Yin Chan; Yining Niu; Guangdi Li; Albert Oates; A.R. Dexter; Gaobao Huang

Collaboration


Dive into the Albert Oates's collaboration.

Top Co-Authors

Avatar

Mark Conyers

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Graeme Poile

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Guangdi Li

New South Wales Department of Primary Industries

View shared research outputs
Top Co-Authors

Avatar

Kwong Yin Chan

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Richard Hayes

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Mark B. Peoples

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John A. Kirkegaard

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

A. D. Swan

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Brian Dear

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

De Li Liu

Charles Sturt University

View shared research outputs
Researchain Logo
Decentralizing Knowledge