Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Smolenski is active.

Publication


Featured researches published by Albert Smolenski.


Trends in Biochemical Sciences | 1997

Distinct and specific functions of cGMP-dependent protein kinases.

Suzanne M. Lohmann; Arie B. Vaandrager; Albert Smolenski; Ulrich Walter; Hugo R. de Jonge

cGMP-dependent protein kinases I and II conduct signals from widespread signaling systems. Whereas the type I kinase mediates numerous effects of natriuretic peptides and nitric oxide in cardiovascular cells, the type II kinase transduces signals from the Escherichia coli heat-stable enterotoxin, STa, and from the endogenous intestinal peptide, guanylin, stimulating Cl- conductance of the cystic fibrosis transmembrane conductance regulator (CFTR). Although the two kinases may be interchangeable for several functions, CFTR regulation specifically requires the type II kinase.


Journal of Biological Chemistry | 1998

Analysis and Regulation of Vasodilator-stimulated Phosphoprotein Serine 239 Phosphorylation in Vitro and in Intact Cells Using a Phosphospecific Monoclonal Antibody

Albert Smolenski; Christiane Bachmann; Kathrin Reinhard; Petra Hönig-Liedl; Thomas Jarchau; Heinz Hoschuetzky; Ulrich Walter

The development and functional analysis of a monoclonal antibody (16C2) are reported; the antibody recognizes vasodilator-stimulated phosphoprotein (VASP; an established substrate of both cAMP- and cGMP-dependent protein kinase) only when serine 239 is phosphorylated. VASP serine 239 represents one of the best characterized cGMP-dependent protein kinase phosphorylation sites in vitro and in intact cells. Experiments with purified, recombinant human VASP and various VASP constructs with mutated phosphorylation sites (S157A, S239A, T278A) and experiments with intact cells (human/rat platelets and other cells) treated with cyclic nucleotide-elevating agents demonstrated the specificity of the monoclonal antibody 16C2. Quantitative analysis of the VASP shift from 46 to 50 kDa (indicating VASP serine 157 phosphorylation) and the appearance of VASP detected by the 16C2 monoclonal antibody (VASP serine 239 phosphorylation) in human platelets stimulated by selective protein kinase activators confirmed that serine 239 is the VASP phosphorylation site preferred by cGMP-dependent protein kinase in intact cells. Immunofluorescence experiments with human platelets treated with cGMP analogs showed that the 16C2 monoclonal antibody also detects VASP serine 239 phosphorylation in situ at established intracellular localization sites. Analysis of VASP serine 239 phosphorylation by the 16C2 antibody appears to be the best method presently available to measure cGMP-dependent protein kinase activation in intact cells. Also, the 16C2 antibody promises to be an excellent tool for the evaluation of VASP function in intact cells.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes.

Beate Fiedler; Suzanne M. Lohmann; Albert Smolenski; Stephan Linnemüller; Burkert Pieske; Frank Schröder; Jeffery D. Molkentin; Helmut Drexler; Kai C. Wollert

Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I (PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly understood. Here, we show that PKG I inhibits CM hypertrophy by targeting the calcineurin-NFAT signaling pathway. Calcineurin, a Ca2+-dependent phosphatase, promotes hypertrophy in part by activating NFAT transcription factors which induce expression of hypertrophic genes, including brain natriuretic peptide (BNP). Activation of PKG I by NO/cGMP in CM suppressed NFAT transcriptional activity, BNP induction, and cell enlargement in response to α1-adrenoreceptor stimulation but not in response to adenoviral expression of a Ca2+-independent, constitutively active calcineurin mutant, thus demonstrating NO-cGMP-PKG I inhibition of calcineurin-NFAT signaling upstream of calcineurin. PKG I suppressed single L-type Ca2+-channel open probability, [Ca2+]i transient amplitude, and, most importantly, L-type Ca2+-channel current-induced NFAT activation, indicating that PKG I targets Ca2+-dependent steps upstream of calcineurin. Adenoviral expression of PKG I enhanced NO/cGMP inhibitory effects upstream of calcineurin, confirming that PKG I mediates NO/cGMP inhibition of calcineurin-NFAT signaling. In CM overexpressing PKG I, NO/cGMP also suppressed BNP induction and cell enlargement but not NFAT activation elicited by constitutively active calcineurin, which is consistent with additional, NFAT-independent inhibitory effect(s) of PKG I downstream of calcineurin. Inhibition of calcineurin-NFAT signaling by PKG I provides a framework for understanding how NO inhibits cardiac myocyte hypertrophy.


Circulation Research | 2000

Vasodilator-Stimulated Phosphoprotein Serine 239 Phosphorylation as a Sensitive Monitor of Defective Nitric Oxide/cGMP Signaling and Endothelial Dysfunction

Matthias Oelze; Hanke Mollnau; Nina Hoffmann; Ascan Warnholtz; Martin Bodenschatz; Albert Smolenski; Ulrich Walter; Mikhail Skatchkov; Thomas Meinertz; Thomas Münzel

Studies with cGMP-dependent protein kinase I (cGK-I)-deficient human cells and mice demonstrated that cGK-I ablation completely disrupts the NO/cGMP pathway in vascular tissue, which indicates a key role of this protein kinase as a mediator of the NO/cGMP action. Analysis of the vasodilator-stimulated phosphoprotein phosphorylated at serine 239 (P-VASP) is a useful tool to monitor cGK-I activation in platelets and cultured endothelial and smooth muscle cells. Therefore, we investigated whether endothelial dysfunction and/or vascular NO bioavailability is reflected by decreased vessel wall P-VASP and whether improvement of endothelial dysfunction restores this P-VASP. Incubation of aortic tissue from New Zealand White Rabbits with the NOS inhibitor NG-nitro-l-arginine and endothelial removal strikingly reduced P-VASP. Oxidative stress induced by inhibition of CuZn superoxide dismutase increased superoxide and decreased P-VASP. Endothelial dysfunction in hyperlipidemic Watanabe rabbits (WHHL) was associated with increased vascular superoxide and with decreased P-VASP. Treatment of WHHL with AT1 receptor blockade improved endothelial dysfunction, reduced vascular superoxide, increased vascular NO bioavailability, and increased P-VASP. Therefore, the level of vessel P-VASP closely follows changes in endothelial function and vascular oxidative stress. P-VASP is suggested to represent a novel biochemical marker for monitoring the NO-stimulated sGC/cGK-I pathway and endothelial integrity in vascular tissue.


Nature Cell Biology | 2002

Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide

Ulrike Zabel; Christoph Kleinschnitz; Phil Oh; Pavel I. Nedvetsky; Albert Smolenski; Helmut Müller; Petra Kronich; Peter Kugler; Ulrich Walter; Jan E. Schnitzer; Harald Schmidt

Nitric oxide (NO) is a ubiquitous, cell-permeable intercellular messenger. The current concept assumes that NO diffuses freely through the plasma membrane into the cytoplasm of a target cell, where it activates its cytosolic receptor enzyme, soluble guanylyl cyclase (sGC). Recent evidence, however, suggests that cellular membranes are not only the predominant site of calcium-dependent NO synthesis, but also the site of its distribution and binding. Here we extend this concept to NO signalling to show that active sGC is partially associated with the plasma membrane in a state of enhanced NO sensitivity. After cellular activation, sGC further translocates to the membrane fraction in human platelets and associates with the NO-synthase-containing caveolar fraction in rat lung endothelial cells, in a manner that is dependent on the concentration of intracellular calcium. Our data suggest that the entire NO signalling pathway is more spatially confined than previously assumed and that sGC dynamically translocates to the plasma membrane, where it is sensitized to NO.


Naunyn-schmiedebergs Archives of Pharmacology | 1998

Functional analysis of cGMP-dependent protein kinases I and II as mediators of NO/cGMP effects

Albert Smolenski; Burkhardt Am; Eigenthaler M; Elke Butt; Stepan Gambaryan; Suzanne M. Lohmann; Ulrich Walter

Abstract NO and cGMP have emerged as important signal transduction mediators of the effects of certain hormones, inter-/intracellular signals, toxins and drugs. However, a major challenge is to define relevant criteria for determining which of the many NO and/or cGMP effects are dependent on cGMP-dependent protein kinases (cGKs). Important criteria include that: (1) the cell types/tissues investigated contain at least one form of cGK which is activated by the cGMP-elevating agent in the intact cell system; (2) specific activators/inhibitors of cGKs mimic/block the effects of cGMP-elevating agents in the intact cell system; and (3) the cGMP effect is absent or blunted in cGK-deficient systems, or can be reconstituted by the introduction of active cGKs.Previously, analysis of cGK activity in intact cells has been very difficult. However, the analysis of vasodilator-stimulated phosphoprotein (VASP) phosphorylation by polyclonal antibodies and newly developed monoclonal antibodies, each of which specifically recognize different phosphorylation sites, allows the quantitative measurement of cGK activity in intact cells. With the use of these methods, the properties of certain cGK mutants, cGK activators (cGMP, 8-Br-cGMP, 8-pCPT-cGMP) as well as various “specific cGK inhibitors” (KT 5823, Rp-8Br-PET-cGMPS, Rp-8-pCPT-cGMPS, H8 and H89) were investigated. Although these “specific cGK inhibitors” have been widely used to establish or rule out functional roles of cGKs, very few studies have actually addressed the efficiency/specificity of such compounds in intact cells. Our results demonstrate that these inhibitors are useful tools only when used in combination with other experimental approaches and biochemical evidence.


Journal of Biological Chemistry | 2000

Regulation of Human Endothelial Cell Focal Adhesion Sites and Migration by cGMP-dependent Protein Kinase I

Albert Smolenski; Wolfgang Poller; Ulrich Walter; Suzanne M. Lohmann

cGMP-dependent protein kinase type I (cGK I), a major constituent of the atrial natriuretic peptide (ANP)/nitric oxide/cGMP signal transduction pathway, phosphorylates the vasodilator-stimulated phosphoprotein (VASP), a member of the Ena/VASP family of proteins involved in regulation of the actin cytoskeleton. Here we demonstrate that stimulation of human umbilical vein endothelial cells (HUVECs) by both ANP and 8-(4-chlorophenylthio)guanosine 3′:5′-monophosphate (8-pCPT-cGMP) activates transfected cGK I and causes detachment of VASP and its known binding partner (zyxin) from focal adhesions in >60% of cells after 30 min. The ANP effects, but not the 8-pCPT-cGMP effects, reversed after 3 h of treatment. In contrast, a catalytically inactive cGK Iβ mutant (cGK Iβ-K405A) was incapable of mediating these effects. VASP mutated (Ser/Thr to Ala) at all three of its established phosphorylation sites (vesicular stomatitis virus-tagged VASP-AAA mutant) was not phosphorylated by cGK I and was resistant to detaching from HUVEC focal adhesions in response to 8-pCPT-cGMP. Furthermore, activation of cGK I, but not of mutant cGK Iβ-K405A, caused a 1.5–2-fold inhibition of HUVEC migration, a dynamic process highly dependent on focal adhesion formation and disassembly. These results indicate that cGK I phosphorylation of VASP results in loss of VASP and zyxin from focal adhesions, a response that could contribute to cGK alteration of cytoskeleton-regulated processes such as cell migration.


Circulation | 2001

Effects of In Vivo Nitroglycerin Treatment on Activity and Expression of the Guanylyl Cyclase and cGMP-Dependent Protein Kinase and Their Downstream Target Vasodilator-Stimulated Phosphoprotein in Aorta

Alexander Mülsch; Matthias Oelze; Stefan Klöss; Hanke Mollnau; Andrea Töpfer; Albert Smolenski; Ulrich Walter; Johannes-Peter Stasch; Ascan Warnholtz; Ulrich Hink; Thomas Meinertz; Thomas Münzel

BackgroundChronic in vivo treatment with nitroglycerin (NTG) induces tolerance to nitrates and cross-tolerance to nitrovasodilators and endothelium-derived nitric oxide (NO). We previously identified increased vascular superoxide formation and reduced NO bioavailability as one causal mechanism. It is still controversial whether intracellular downstream signaling to nitrovasodilator-derived NO is affected as well. Methods and ResultsWe therefore studied the effects of 3-day NTG treatment of rats and rabbits on activity and expression of the immediate NO target soluble guanylyl cyclase (sGC) and on the cGMP-activated protein kinase I (cGK-I). Tolerance was induced either by chronic NTG infusion via osmotic minipumps (rats) or by NTG patches (rabbits). Western blot analysis, semiquantitative reverse transcription-polymerase chain reaction, and Northern blot analysis revealed significant and comparable increases in the expression of sGC &agr;1 and &bgr;1 subunit protein and mRNA. Studies with the oxidative fluorescent dye hydroethidine revealed an increase in superoxide in the endothelium and smooth muscle. Stimulation with NADH increased superoxide signals in both layers. Although cGK-I expression in response to low-dose NTG was not changed, a strong reduction in vasodilator-stimulated phosphoprotein (VASP) serine239 phosphorylation (specific substrate of cGK-I) was observed in tolerant tissue from rats and rabbits. Concomitant in vivo and in vitro treatment with vitamin C improved tolerance, reduced oxidative stress, and improved P-VASP. ConclusionsWe therefore conclude that increased expression of sGC in the setting of tolerance reflects a chronic inhibition rather than an induction of the sGC–cGK-I pathway and may be mediated at least in part by increased vascular superoxide.


Journal of Thrombosis and Haemostasis | 2012

Novel roles of cAMP/cGMP dependent signaling in platelets

Albert Smolenski

Summary.  Endothelial prostacyclin and nitric oxide potently inhibit platelet functions. Prostacyclin and nitric oxide actions are mediated by platelet adenylyl and guanylyl cyclases, which synthesize cyclic AMP (cAMP) and cyclic GMP (cGMP), respectively. Cyclic nucleotides stimulate cAMP‐dependent protein kinase (protein kinase A [PKA]I and PKAII) and cGMP‐dependent protein kinase (protein kinase G [PKG]I) to phosphorylate a broad panel of substrate proteins. Substrate phosphorylation results in the inactivation of small G‐proteins of the Ras and Rho families, inhibition of the release of Ca2+ from intracellular stores, and modulation of actin cytoskeleton dynamics. Thus, PKA/PKG substrates translate prostacyclin and nitric oxide signals into a block of platelet adhesion, granule release, and aggregation. cAMP and cGMP are degraded by phosphodiesterases, which might restrict signaling to specific subcellular compartments. An emerging principle of cyclic nucleotide signaling in platelets is the high degree of interconnection between activating and cAMP/cGMP‐dependent inhibitory signaling pathways at all levels, including cAMP/cGMP synthesis and breakdown, and PKA/PKG‐mediated substrate phosphorylation. Furthermore, defects in cAMP/cGMP pathways might contribute to platelet hyperreactivity in cardiovascular disease. This article focuses on recent insights into the regulation of the cAMP/cGMP signaling network and on new targets of PKA and PKG in platelets.


Journal of Biological Chemistry | 2006

Cyclic GMP-dependent Protein Kinase Iα Attenuates Necrosis and Apoptosis Following Ischemia/Reoxygenation in Adult Cardiomyocyte

Anindita Das; Albert Smolenski; Suzanne M. Lohmann; Rakesh C. Kukreja

Cyclic GMP-dependent protein kinases protein kinase G (PKG) Iα and PKGIβ are major mediators of cGMP signaling in the cardiovascular system. PKGIα is present in the heart, although its role in protection against ischemia/reperfusion injury is not known. We investigated the direct effect of PKGIα against necrosis and apoptosis following simulated ischemia (SI) and reoxygenation (RO) in cardiomyocytes. Adult rat cardiomyocytes were infected with adenoviral vectors containing hPKGIα or catalytically inactive mutant hPKGIαK390A. After 24 h, the cells were subjected to 90 min of SI and 2 h RO for necrosis (trypan blue exclusion and lactate dehydrogenase release) or 18 h RO for apoptosis studies. To evaluate the role of KATP channels, subgroups of cells were treated with 5-hydroxydecanoate (100 μm), HMR1098 (30 μm), or glibenclamide (50 μm), the respective blockers of mitochondrial, sarcolemmal, or both types of KATP channels prior to SI. The necrosis observed in 33.7 ± 1.6% of total myocytes in the SI-RO control group was reduced to 18.6 ± 0.8% by PKGIα (mean ± S.E., n = 7, p < 0.001). The apoptosis observed in 17.9 ± 1.3% of total myocytes in the SI-RO control group was reduced to 6.0 ± 0.6% by PKGIα (mean ± S.E., n = 7, p < 0.001). In addition, PKGIα inhibited the activation of caspase-3 after SI-RO in myocytes. Myocytes infected with the inactive PKGIαK390A mutant showed no protection. PKGIα enhanced phosphorylation of Akt, ERK1/2, and JNK, increased Bcl-2, inducible nitric-oxide synthase, endothelial nitric-oxide synthase, and decreased Bax expression. 5-Hydroxydecanoate and glibenclamide abolished PKGIα-mediated protection against necrosis and apoptosis. However, HMR1098, had no effect. A scavenger of reactive oxygen species, as well as inhibitors of phosphatidylinositol 3-kinase, ERK, JNK1, and NOS, also blocked PKGIα-mediated protection against necrosis and apoptosis. These results show that opening of mitochondrial KATP channels and generation of reactive oxygen species, in association with phosphorylation of Akt, ERK, and JNK, and increased expression of NOS and Bcl-2, play an essential role in the protective effect of PKGIα.

Collaboration


Dive into the Albert Smolenski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stepan Gambaryan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jan Schultess

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Meike Hoffmeister

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Oliver Danielewski

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Elke Butt

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Hugo R. de Jonge

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Olga Neumüller

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge