Albert Vandenberg
University of Saskatchewan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albert Vandenberg.
Theoretical and Applied Genetics | 2003
Bunyamin Tar'an; Tom Warkentin; Daryl J. Somers; Albert Vandenberg; S. Blade; S. Woods; D. Bing; A. Xue; D. DeKoeyer; G. Penner
With the development of genetic maps and the identification of the most-likely positions of quantitative trait loci (QTLs) on these maps, molecular markers for lodging resistance can be identified. Consequently, marker-assisted selection (MAS) has the potential to improve the efficiency of selection for lodging resistance in a breeding program. This study was conducted to identify genetic loci associated with lodging resistance, plant height and reaction to mycosphaerella blight in pea. A population consisting of 88 recombinant inbred lines (RILs) was developed from a cross between Carneval and MP1401. The RILs were evaluated in 11 environments across the provinces of Manitoba, Saskatchewan and Alberta, Canada in 1998, 1999 and 2000. One hundred and ninety two amplified fragment length polymorphism (AFLP) markers, 13 random amplified polymorphic DNA (RAPD) markers and one sequence tagged site (STS) marker were assigned to ten linkage groups (LGs) that covered 1,274 centi Morgans (cM) of the pea genome. Six of these LGs were aligned with the previous pea map. Two QTLs were identified for lodging resistance that collectively explained 58% of the total phenotypic variation in the mean environment. Three QTLs were identified each for plant height and resistance to mycosphaerella blight, which accounted for 65% and 36% of the total phenotypic variation, respectively, in the mean environment. These QTLs were relatively consistent across environments. The AFLP marker that was associated with the major locus for lodging resistance was converted into the sequence-characterized amplified-region (SCAR) marker. The presence or absence of the SCAR marker corresponded well with the lodging reaction of 50 commercial pea varieties.
BMC Genomics | 2013
Andrew G. Sharpe; Larissa Ramsay; Lacey-Anne Sanderson; Michael Fedoruk; Wayne E. Clarke; Rong Li; Sateesh Kagale; Perumal Vijayan; Albert Vandenberg; Kirstin E. Bett
BackgroundThe genus Lens comprises a range of closely related species within the galegoid clade of the Papilionoideae family. The clade includes other important crops (e.g. chickpea and pea) as well as a sequenced model legume (Medicago truncatula). Lentil is a global food crop increasing in importance in the Indian sub-continent and elsewhere due to its nutritional value and quick cooking time. Despite this importance there has been a dearth of genetic and genomic resources for the crop and this has limited the application of marker-assisted selection strategies in breeding.ResultsWe describe here the development of a deep and diverse transcriptome resource for lentil using next generation sequencing technology. The generation of data in multiple cultivated (L. culinaris) and wild (L. ervoides) genotypes together with the utilization of a bioinformatics workflow enabled the identification of a large collection of SNPs and the subsequent development of a genotyping platform that was used to establish the first comprehensive genetic map of the L. culinaris genome. Extensive collinearity with M. truncatula was evident on the basis of sequence homology between mapped markers and the model genome and large translocations and inversions relative to M. truncatula were identified. An estimate for the time divergence of L. culinaris from L. ervoides and of both from M. truncatula was also calculated.ConclusionsThe availability of the genomic and derived molecular marker resources presented here will help change lentil breeding strategies and lead to increased genetic gain in the future.
Journal of Agricultural and Food Chemistry | 2009
Dil Thavarajah; Pushparajah Thavarajah; Ashutosh Sarker; Albert Vandenberg
Micronutrient malnutrition, the hidden hunger, affects more than 40% of the worlds population, and a majority of them are in South and South East Asia and Africa. This study was carried out to determine the potential for iron (Fe) and zinc (Zn) biofortification of lentils ( Lens culinaris Medikus subsp. culinaris ) to improve human nutrition. Lentils are a common and quick-cooking nutritious staple pulse in many developing countries. We analyzed the total Fe and Zn concentrations of 19 lentil genotypes grown at eight locations for 2 years in Saskatchewan, Canada. It was observed that some genetic variation exists for Fe and Zn concentrations among the lentil lines tested. The total Fe and Zn concentrations ranged from 73 to 90 mg of Fe kg(-1) and from 44 to 54 mg of Zn kg(-1). The calculated percentages of the recommended daily allowance (RDA) for Fe and Zn were within the RDA ranges from a 100 g serving of dry lentils. Broad-sense heritability estimates for Fe and Zn concentrations in lentil seed were 64 and 68%, respectively. It was concluded that lentils have great potential as a whole food source of Fe and Zn for people affected by these nutrient deficiencies. This is the first report on the genetic basis for Fe and Zn micronutrient content in lentils. These results provide some understanding of the genetic basis of Fe and Zn concentrations and will allow for the development of potential strategies for genetic biofortification.
Journal of Agricultural and Food Chemistry | 2008
Dil Thavarajah; Jamie Ruszkowski; Albert Vandenberg
Beneficial forms of selenium (Se) and their impact on human health are a global topic of interest in public health. We are studying the genetic potential for Se biofortification of pulse crops to improve human nutrition. Lentils ( Lens culinaris L.) are an important protein and carbohydrate food and are a valuable source of essential dietary components and trace elements. We analyzed the total Se concentration of 19 lentil genotypes grown at eight locations for two years in Saskatchewan, Canada. We observed significant genotypic and environmental variation in total Se concentration in lentils and that total Se concentration in lentils ranged between 425 and 673 microg kg(-1), providing 77-122% of the recommended daily intake in 100 g of dry lentils. Over 70% of the Se was present as selenomethionine (SeMet) with a smaller fraction (<20%) as inorganic Se and very small amounts as selenocysteine (SeCys). We found that soils from the locations where the lentils were grown were rich in Se (37-301 microg kg(-1)) and that lentils grown in Saskatchewan have the potential to provide an excellent natural source of this essential element. Our analyses gave us a preliminary understanding of the genetic basis of Se uptake in lentil and indicated that any potential strategy for micronutrient biofortification in lentil will require choice of field locations that minimize the spatial variability of soil Se content.
Journal of Agricultural and Food Chemistry | 2009
Pushparajah Thavarajah; Dil Thavarajah; Albert Vandenberg
Phytic acid is an antinutrient present mainly in seeds of grain crops such as legumes and cereals. It has the potential to bind mineral micronutrients in food and reduce their bioavailability. This study analyzed the phytic acid concentration in seeds of 19 lentil ( Lens culinaris L.) genotypes grown at two locations for two years in Saskatchewan, Canada. The objectives of this study were to determine (1) the levels of phytic acid in commercial lentil genotypes and (2) the impact of postharvest processing and (3) the effect of boiling on the stability of phytic aid in selected lentil genotypes. The phytic acid was analyzed by high-performance anion exchange separation followed by conductivity detection. The Saskatchewan-grown lentils were naturally low in phytic acid (phytic acid = 2.5-4.4 mg g(-1); phytic acid phosphorus = 0.7-1.2 mg g(-1)), with concentrations lower than those reported for low phytic acid mutants of corn, wheat, common bean, and soybean. Decortication prior to cooking further reduced total phytic acid by >50%. As lowering phytic acid intake can lead to increased mineral bioavailability, dietary inclusion of Canadian lentils may have significant benefits in regions with widespread micronutrient malnutrition.
Euphytica | 2003
Bunyamin Tar'an; L. Buchwaldt; A. Tullu; Sabine Banniza; Tom Warkentin; Albert Vandenberg
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population.
Critical Reviews in Plant Sciences | 2015
G. Duc; H. Agrama; S. Bao; Jens Berger; V. Bourion; A. M. De Ron; C. L. L. Gowda; A.M. Mikić; D. Millot; Karam B. Singh; A. Tullu; Albert Vandenberg; M.C. Vaz Patto; Tom Warkentin; X. Zong
Although yield and total biomass produced by annual legumes remain major objectives for breeders, other issues such as environment-friendly, resource use efficiency including symbiotic performance, resilient production in the context of climate change, adaptation to sustainable cropping systems (reducing leaching, greenhouse gas emissions and pesticide residues), adaptation to diverse uses (seeds for feed, food, non-food, forage or green manure) and finally new ecological services such as pollinator protection, imply the need for definition of new ideotypes and development of innovative genotypes to enhance their commercialization. Taken as a whole, this means more complex and integrated objectives for breeders. Several illustrations will be given of breeding such complex traits for different annual legume species. Genetic diversity for root development and for the ability to establish efficient symbioses with rhizobia and mycorrhiza can contribute to better resource management (N, P, water). Shoot architectures and phenologies can contribute to yield and biotic constraint protection (parasitic weeds, diseases or insects) reducing pesticide use. Variable maturity periods and tolerance to biotic and abiotic stresses are key features for the introduction of annual legumes to low input cropping systems and for enlarging cultivated area. Adaptation to intercropping requires adapted genotypes. Improved health and nutritional value for humans are key objectives for developing new markets. Modifying product composition often requires the development of specific cultivars and sometimes the need to break negative genetic correlations with yield. A holistic approach in legume breeding is important for defining objectives with farmers, processors and consumers. The cultivar structures are likely to be more complex, combining genotypes, plant species and associated symbionts. New tools to build and evaluate them are important if legumes are to deliver their exciting potential in terms of agricultural productivity and sustainability as well as for feed and food.
BMC Genomics | 2011
Vijai Bhadauria; Sabine Banniza; Albert Vandenberg; Gopalan Selvaraj; Yangdou Wei
BackgroundColletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific.ResultsA directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs) with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs) in their deduced open reading frames (ORFs). The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs), candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain), cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX) based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP) domain containing protein, unlike CP proteins from other fungal pathogens was unable to elicit a hypersensitive response (HR).ConclusionsThe current study catalogues proteins putatively secreted at the in planta biotrophy-necrotrophy transition of C. truncatum. Some of these proteins may have a role in establishing compatible interaction with the host plant.
Canadian Journal of Plant Science | 2005
Tom Warkentin; Sabine Banniza; Albert Vandenberg
CDC Frontier, a kabuli chickpea (Cicer arietinum L.) cultivar, was released in 2003 by the Crop Development Centre, University of Saskatchewan, for distribution to Select seed growers in western Canada through the Variety Release Program of the Saskatchewan Pulse Growers. CDC Frontier has a pinnate leaf type, fair ascochyta blight [Ascochyta rabiei (Pass.) Labr.] resistance, medium maturity, medium-large seed size and high yield potential in the Brown and Dark Brown soil zones of the Canadian prairies. Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight
Euphytica | 2001
Mahboob A. Chowdhury; Chandra P. Andrahennadi; A. E. Slinkard; Albert Vandenberg
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil.