Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Zlotnik is active.

Publication


Featured researches published by Albert Zlotnik.


Nature | 2001

Involvement of chemokine receptors in breast cancer metastasis

Anja Müller; Bernhard Homey; Hortensia Soto; Nianfeng Ge; Daniel Catron; Matthew E. Buchanan; Terri McClanahan; Erin Murphy; Wei Yuan; Stephan N. Wagner; Jose Luis Barrera; Alejandro Mohar; Emma Verastegui; Albert Zlotnik

Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.


Nature Medicine | 2002

CCL27–CCR10 interactions regulate T cell–mediated skin inflammation

Bernhard Homey; Harri Alenius; Anja Müller; Hortensia Soto; Edward P. Bowman; Wei Yuan; Leslie M. McEvoy; Antti Lauerma; Till Assmann; Erich Bünemann; Maili Lehto; Henrik Wolff; David Yen; Heather Marxhausen; Wayne To; Jonathon D. Sedgwick; Thomas Ruzicka; Percy Lehmann; Albert Zlotnik

The skin-associated chemokine CCL27 (also called CTACK, ALP and ESkine) and its receptor CCR10 (GPR-2) mediate chemotactic responses of skin-homing T cells in vitro. Here we report that most skin-infiltrating lymphocytes in patients suffering from psoriasis, atopic or allergic-contact dermatitis express CCR10. Epidermal basal keratinocytes produced CCL27 protein that bound to extracellular matrix, mediated adhesion and was displayed on the surface of dermal endothelial cells. Tumor necrosis factor-α and interleukin-1β induced CCL27 production whereas the glucocorticosteroid clobetasol propionate suppressed it. Circulating skin-homing CLA+ T cells, dermal microvascular endothelial cells and fibroblasts expressed CCR10 on their cell surface. In vivo, intracutaneous CCL27 injection attracted lymphocytes and, conversely, neutralization of CCL27–CCR10 interactions impaired lymphocyte recruitment to the skin leading to the suppression of allergen-induced skin inflammation. Together, these findings indicate that CCL27–CCR10 interactions have a pivotal role in T cell–mediated skin inflammation.


Journal of Immunology | 2000

Up-Regulation of Macrophage Inflammatory Protein-3α/CCL20 and CC Chemokine Receptor 6 in Psoriasis

Bernhard Homey; Marie-Caroline Dieu-Nosjean; Andrea Wiesenborn; Catherine Massacrier; Jean-Jacques Pin; Elizabeth R. Oldham; Daniel Catron; Matthew E. Buchanan; Anja Müller; Rene de Waal Malefyt; Glenn Deng; Rocio Orozco; Thomas Ruzicka; Percy Lehmann; Serge Lebecque; Christophe Caux; Albert Zlotnik

Autoimmunity plays a key role in the immunopathogenesis of psoriasis; however, little is known about the recruitment of pathogenic cells to skin lesions. We report here that the CC chemokine, macrophage inflammatory protein-3α, recently renamed CCL20, and its receptor CCR6 are markedly up-regulated in psoriasis. CCL20-expressing keratinocytes colocalize with skin-infiltrating T cells in lesional psoriatic skin. PBMCs derived from psoriatic patients show significantly increased CCR6 mRNA levels. Moreover, skin-homing CLA+ memory T cells express high levels of surface CCR6. Furthermore, the expression of CCR6 mRNA is 100- to 1000-fold higher on sorted CLA+ memory T cells than other chemokine receptors, including CXCR1, CXCR2, CXCR3, CCR2, CCR3, and CCR5. In vitro, CCL20 attracted skin-homing CLA+ T cells of both normal and psoriatic donors; however, psoriatic lymphocytes responded to lower concentrations of chemokine and showed higher chemotactic responses. Using ELISA as well as real-time quantitative PCR, we show that cultured primary keratinocytes, dermal fibroblasts, and dermal microvascular endothelial and dendritic cells are major sources of CCL20, and that the expression of this chemokine can be induced by proinflammatory mediators such as TNF-α/IL-1β, CD40 ligand, IFN-γ, or IL-17. Taken together, these findings strongly suggest that CCL20/CCR6 may play a role in the recruitment of T cells to lesional psoriatic skin.


Immunity | 2012

The Chemokine Superfamily Revisited

Albert Zlotnik; Osamu Yoshie

The chemokine superfamily consists of a large number of ligands and receptors. At first glance, this family appears redundant and their ligand-receptor relationships promiscuous, making its study challenging. However, analyzing this family from the evolutionary perspective greatly simplifies understanding both the organization and function of this apparently complex system. In particular, the functions of a subgroup of chemokines (designated homeostatic chemokines) have played pivotal roles in advancing our understanding of the organization and function of the cellular networks that shape the immune system. Here, we update the full scope of the human and mouse chemokine superfamilies and their relationships and summarize several important roles that homeostatic chemokines play in the immune system.


Genome Biology | 2006

The chemokine and chemokine receptor superfamilies and their molecular evolution

Albert Zlotnik; Osamu Yoshie; Hisayuki Nomiyama

The human chemokine superfamily currently includes at least 46 ligands, which bind to 18 functionally signaling G-protein-coupled receptors and two decoy or scavenger receptors. The chemokine ligands probably comprise one of the first completely known molecular superfamilies. The genomic organization of the chemokine ligand genes and a comparison of their sequences between species shows that tandem gene duplication has taken place independently in the mouse and human lineages of some chemokine families. This means that care needs to be taken when extrapolating experimental results on some chemokines from mouse to human.


Nature Reviews Immunology | 2002

Chemokines: agents for the immunotherapy of cancer?

Bernhard Homey; Anja Müller; Albert Zlotnik

Chemokines, a superfamilly of small cytokine-like molecules, regulate leukocyte transport in the body. In recent years, we have witnessed the transition of immunotherapeutic strategies from the laboratory to the bedside. Here, we review the role of chemokines in tumour biology and the development of the hosts anti-tumour defence. We summarize the current knowledge of chemokine-receptor expression by relevant cellular components of the immune system and the role of their ligands in the organization of the antitumour immune response. Finally, we discuss recent findings which indicate that chemokines have therapeutic potential as adjuvants or treatments in antitumour immunotherapy, as well as remaining questions and perspectives for translating experimental evidence into clinical practice.


Pharmacological Reviews | 2013

International union of pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors

Françoise Bachelerie; Adit Ben-Baruch; Amanda M. Burkhardt; Christophe Combadière; Joshua M. Farber; Gerard J. Graham; Richard Horuk; Alexander Hovard Sparre-Ulrich; Massimo Locati; Andrew D. Luster; Alberto Mantovani; Kouji Matsushima; Philip M. Murphy; Robert J. B. Nibbs; Hisayuki Nomiyama; Christine A. Power; Amanda E. I. Proudfoot; Mette M. Rosenkilde; Antal Rot; Silvano Sozzani; Marcus Thelen; Osamu Yoshie; Albert Zlotnik

Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.


Springer Seminars in Immunopathology | 2000

Dendritic cell biology and regulation of dendritic cell trafficking by chemokines

Christophe Caux; Smina Ait-Yahia; Karine Chemin; Odette de Bouteiller; Marie-Caroline Dieu-Nosjean; Bernhard Homey; Catherine Massacrier; Béatrice Vanbervliet; Albert Zlotnik; Alain Vicari

DC (dendritic cells) represent an heterogeneous family of cells which function as sentinels of the immune system. They traffic from the blood to the tissues where, while immature, they capture antigens. Then, following inflammatory stimuli, they leave the tissues and move to the draining lymphoid organs where, converted into mature DC, they prime naive T cells. The key role of DC migration in their sentinel function led to the investigation of the chemokine responsiveness of DC populations during their development and maturation. These studies have shown that immature DC respond to many CC and CXC chemokines (MIP-lα, MIP-iβ, MIP-3α, MIP-5, MCP-3, MCP-4, RANTES, TECK and SDF-1) which are inducible upon inflammatory stimuli. Importantly, each immature DC population displays a unique spectrum of chemokine responsiveness. For examples, Langerhans cells migrate selectively to MIP-3α (via CCR6), blood CDllc+ DC to MCP chemokines (via CCR2), monocytes derived-DC respond to MIP-lα/β (via CCR1 and CCR5), while blood CDllc- DC precursors do not respond to any of these chemokines. All these chemokines are inducible upon inflammatory stimuli, in particular MIP-3α, which is only detected within inflamed epithelium, a site of antigen entry known to be infiltrated by immature DC. In contrast to immature DC, mature DC lose their responsiveness to most of these inflammatory chemokines through receptor down-regulation or desensitization, but acquire responsiveness to ELC/MIP-3β and SLCASCkine as a consequence of CCR7 up-regulation. ELC/MIP-3(3 and SLC/6Ckine are specifically expressed in the T-cell-rich areas where mature DC home to become interdigitating DC. Altogether, these observations suggest that the inflammatory chemokines secreted at the site of pathogen invasion will determine the DC subset recruited and will influence the class of the immune response initiated. In contrast, MIP-3β/6Ckine have a determinant role in the accumulation of antigen-loaded mature DC in T cell-rich areas of the draining lymph node, as illustrated by recent observations in mice deficient for CCR7 or SLC/6Ckine. A better understanding of the regulation of DC trafficking might offer new opportunities of therapeutic interventions to suppress, stimulate or deviate the immune response.


Journal of Immunology | 2000

Cutting Edge: The Orphan Chemokine Receptor G Protein-Coupled Receptor-2 (GPR-2, CCR10) Binds the Skin-Associated Chemokine CCL27 (CTACK/ALP/ILC)

Bernhard Homey; Wei Wang; Hortensia Soto; Matthew E. Buchanan; Andrea Wiesenborn; Daniel Catron; Anja Müller; Terrill K. McClanahan; Marie-Caroline Dieu-Nosjean; Rocio Orozco; Thomas Ruzicka; Percy Lehmann; Elizabeth R. Oldham; Albert Zlotnik

We recently reported the identification of a chemokine (CTACK), which has been renamed CCL27 according to a new systematic chemokine nomenclature. We report that CCL27 binds the previously orphan chemokine receptor GPR-2, as detected by calcium flux and chemotactic responses of GPR-2 transfectants. We renamed this receptor CCR10. Because of the skin-associated expression pattern of CCL27, we focused on the expression of CCL27 and CCR10 in normal skin compared with inflammatory and autoimmune skin diseases. CCL27 is constitutively produced by keratinocytes but can also be induced upon stimulation with TNF-α and IL-1β. CCR10 is not expressed by keratinocytes and is instead expressed by melanocytes, dermal fibroblasts, and dermal microvascular endothelial cells. CCR10 was also detected in T cells as well as in skin-derived Langerhans cells. Taken together, these observations suggest a role for this novel ligand/receptor pair in both skin homeostasis as well as a potential role in inflammatory responses.


Immunity | 1997

TECK: A Novel CC Chemokine Specifically Expressed by Thymic Dendritic Cells and Potentially Involved in T Cell Development

Alain Vicari; David J Figueroa; Joseph A. Hedrick; Jessica S Foster; Komal Singh; Satish Menon; Neal G. Copeland; Debra J. Gilbert; Nancy A. Jenkins; Kevin B. Bacon; Albert Zlotnik

A novel CC chemokine was identified in the thymus of mouse and human and was designated TECK (thymus-expressed chemokine). TECK has weak homology to other CC chemokines and maps to mouse chromosome 8. Besides the thymus, mRNA encoding TECK was detected at substantial levels in the small intestine and at low levels in the liver. The source of TECK in the thymus was determined to be thymic dendritic cells; in contrast, bone marrow-derived dendritic cells do not express TECK. The murine TECK recombinant protein showed chemotactic activity for activated macrophages, dendritic cells, and thymocytes. We conclude that TECK represents a novel thymic dendritic cell-specific CC chemokine that is possibly involved in T cell development.

Collaboration


Dive into the Albert Zlotnik's collaboration.

Top Co-Authors

Avatar

Peter Hevezi

University of California

View shared research outputs
Top Co-Authors

Avatar

Bernhard Homey

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Müller

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Meller

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. Jenkins

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge