Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberta Pinnola is active.

Publication


Featured researches published by Alberta Pinnola.


The Plant Cell | 2013

Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens

Alberta Pinnola; Luca Dall’Osto; Caterina Gerotto; Tomas Morosinotto; Roberto Bassi; Alessandro Alboresi

In the moss Physcomitrella patens, LHCSR and PSBS, which trigger nonphotochemical quenching (NPQ) in green algae and vascular plants, respectively, are both active. This work reports that zeaxanthin, an NPQ enhancer, is far more active on LHCSR-dependent NPQ than on the PSBS-dependent NPQ. Consistent with this, zeaxanthin binds LHCSR in excess light. Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.


The Plant Cell | 2015

Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens

Alberta Pinnola; Stefano Cazzaniga; Alessandro Alboresi; Reinat Nevo; Smadar Levin-Zaidman; Ziv Reich; Roberto Bassi

High-light-dependent quenching of PSII is catalyzed by Photosystem II Subunit S (PSBS), whereas Light-Harvesting Complex Stress-Related (LHCSR) acts on both PSI and PSII in Physcomitrella patens. Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.


Plant and Cell Physiology | 2012

Enhancement of Non-Photochemical Quenching in the Bryophyte Physcomitrella patens During Acclimation to Salt and Osmotic Stress

Ghazi Azzabi; Alberta Pinnola; Nico Betterle; Roberto Bassi; Alessandro Alboresi

Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.


Nature Chemistry | 2017

Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection

Toru Kondo; Alberta Pinnola; Wei Jia Chen; Luca Dall'Osto; Roberto Bassi; Gabriela S. Schlau-Cohen

In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity-step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.


Journal of Biological Chemistry | 2015

Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp

Alberta Pinnola; Leonardo Ghin; Elisa Gecchele; Matilde Merlin; Alessandro Alboresi; Linda Avesani; Mario Pezzotti; Stefano Capaldi; Stefano Cazzaniga; Roberto Bassi

Background: LHCSR protein in algae and mosses is essential for NPQ. Results: Expression and characterization of Physcomitrella patens LHCSR1 protein upon heterologous expression in N. benthamiana and N. tabacum was obtained. Conclusion: LHCSR1 is the first member of LHC protein family lacking Chlorophyll b. It is active in NPQ. Significance: LHCSR1 isolation is crucial for the elucidation of the NPQ mechanism. Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies.


Biochimica et Biophysica Acta | 2016

Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens.

Alberta Pinnola; Hristina Staleva-Musto; Stefano Capaldi; Matteo Ballottari; Roberto Bassi; Tomáš Polívka

Plants harvest photons for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that can reversibly switch from harvesting to energy-dissipation mode to prevent over-excitation and damage of the photosynthetic apparatus. In unicellular algae and lower plants this process requires the LHCSR proteins which senses over-acidification of the lumen trough protonatable residues exposed to the thylakoid lumen to activate quenching reactions. Further activation is provided by replacement of the violaxanthin ligand with its de-epoxidized product, zeaxanthin, also induced by excess light. We have produced the ppLHCSR1 protein from Physcomitrella patens by over-expression in tobacco and purified it in either its violaxanthin- or the zeaxanthin-binding form with the aim of analyzing their spectroscopic properties at either neutral or acidic pH. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved by two distinct quenching mechanism which are both activated by low pH. The first is present in both ppLHCSR1-Vio and ppLHCSR1-Zea and is characterized by 30-40ps time constant. The spectrum of the quenching product is reminiscent of a carotenoid radical cation, suggesting that the pH-induced quenching mechanism is likely electron transfer from the carotenoid to the excited Chl a. In addition, a second quenching channel populating the S1 state of carotenoid via energy transfer from Chl is found exclusively in the ppLHCSR1-Zea at pH5. These results provide proof of principle that more than one quenching mechanism may operate in the LHC superfamily and also help understanding the photoprotective role of LHCSR proteins and the evolution of LHC antennae.


Scientific Reports | 2017

Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH

Alberta Pinnola; Matteo Ballottari; Ilaria Bargigia; Marcelo J. P. Alcocer; Cosimo D'Andrea; Giulio Cerullo; Roberto Bassi

Light harvesting for oxygenic photosynthesis is regulated to prevent the formation of harmful photoproducts by activation of photoprotective mechanisms safely dissipating the energy absorbed in excess. Lumen acidification is the trigger for the formation of quenching states in pigment binding complexes. With the aim to uncover the photoprotective functional states responsible for excess energy dissipation in green algae and mosses, we compared the fluorescence dynamic properties of the light-harvesting complex stress-related (LHCSR1) protein, which is essential for fast and reversible regulation of light use efficiency in lower plants, as compared to the major LHCII antenna protein, which mainly fulfills light harvesting function. Both LHCII and LHCSR1 had a chlorophyll fluorescence yield and lifetime strongly dependent on detergent concentration but the transition from long- to short-living states was far more complete and fast in the latter. Low pH and zeaxanthin binding enhanced the relative amplitude of quenched states in LHCSR1, which were characterized by the presence of 80 ps fluorescence decay components with a red-shifted emission spectrum. We suggest that energy dissipation occurs in the chloroplast by the activation of 80 ps quenching sites in LHCSR1 which spill over excitons from the photosystem II antenna system.


Nature plants | 2018

A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens

Alberta Pinnola; Alessandro Alboresi; Lukáš Nosek; Dmitry A. Semchonok; Arshad Rameez; Andrea Trotta; Fabrizio Barozzi; Roman Kouřil; Luca Dall’Osto; Eva-Mari Aro; Egbert J. Boekema; Roberto Bassi

Photosystem I of the moss Physcomitrella patens has special properties, including the capacity to undergo non-photochemical fluorescence quenching. We studied the organization of photosystem I under different light and carbon supply conditions in wild-type moss and in moss with the lhcb9 (light-harvesting complex) knockout genotype, which lacks an antenna protein endowed with red-shifted absorption forms. Wild-type moss, when grown on sugars and in low light, accumulated LHCB9 proteins and a large form of the photosystem I supercomplex, which, besides the canonical four LHCI subunits, included a LHCII trimer and four additional LHC monomers. The lhcb9 knockout produced an angiosperm-like photosystem I supercomplex with four LHCI subunits irrespective of the growth conditions. Growth in the presence of sublethal concentrations of electron transport inhibitors that caused oxidation or reduction of the plastoquinone pool prevented or promoted, respectively, the accumulation of LHCB9 and the formation of the photosystem I megacomplex. We suggest that LHCB9 is a key subunit regulating the antenna size of photosystem I and the ability to avoid the over-reduction of plastoquinone: this condition is potentially dangerous in the shaded and sunfleck-rich environment typical of mosses, whose plastoquinone pool is reduced by both photosystem II and the oxidation of sugar substrates.The organization of photosystem I from the moss P. patens was studied under different light and carbon supply conditions. Different supercomplexes are formed under these conditions controlled by the light-harvesting complex LHCB9 protein subunit.


Biochemical Society Transactions | 2018

Molecular mechanisms involved in plant photoprotection

Alberta Pinnola; Roberto Bassi


Archive | 2013

Algae, a New Biomass Resource

Alberta Pinnola; Cinzia Formighieri; Roberto Bassi

Collaboration


Dive into the Alberta Pinnola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge