Alberto Arzac
Siberian Federal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Arzac.
New Phytologist | 2013
José Miguel Olano; Alberto Arzac; Ana I. García-Cervigón; Georg von Arx; Vicente Rozas
Tree-ring anatomy reflects the year-by-year impact of environmental factors on tree growth. Up to now, research in this field has mainly focused on the hydraulic architecture, with ray parenchyma neglected despite the growing recognition of its relevance for xylem function. Our aim was to address this gap by exploring the potential of the annual patterns of xylem parenchyma as a climate proxy. We constructed ring-width and ray-parenchyma chronologies from 1965 to 2004 for 20 Juniperus thurifera trees growing in a Mediterranean continental climate. Chronologies were related to climate records by means of correlation, multiple regression and partial correlation analyses. Ray parenchyma responded to climatic conditions at critical stages during the xylogenetic process; namely, at the end of the previous years xylogenesis (October) and at the onset of earlywood (May) and latewood formation (August). Ray parenchyma-based chronologies have potential to complement ring-width chronologies as a tool for climate reconstructions. Furthermore, medium- and low-frequency signals in the variation of ray parenchyma may improve our understanding of how trees respond to environmental fluctuations and to global change.
Oecologia | 2014
José Miguel Olano; Juan Carlos Linares; Ana I. García-Cervigón; Alberto Arzac; Antonio Delgado; Vicente Rozas
In order to understand the impact of drought and intrinsic water-use efficiency (iWUE) on tree growth, we evaluated the relative importance of direct and indirect effects of water availability on secondary growth and xylem anatomy of Juniperus thurifera, a Mediterranean anisohydric conifer. Dendrochronological techniques, quantitative xylem anatomy, and 13C/12C isotopic ratio were combined to develop standardized chronologies for iWUE, BAI (basal area increment), and anatomical variables on a 40-year-long annually resolved series for 20 trees. We tested the relationship between iWUE and secondary growth at short-term (annual) and long-term (decadal) temporal scales to evaluate whether gains in iWUE may lead to increases in secondary growth. We obtained a positive long-term correlation between iWUE and BAI, simultaneously with a negative short-term correlation between them. Furthermore, BAI and iWUE were correlated with anatomical traits related to carbon sink or storage (tracheid wall thickness and ray parenchyma amount), but no significant correlation with conductive traits (tracheid lumen) was found. Water availability during the growing season significantly modulated tree growth at the xylem level, where growth rates and wood anatomical traits were affected by June precipitation. Our results are consistent with a drought-induced limitation of tree growth response to rising CO2, despite the trend of rising iWUE being maintained. We also remark the usefulness of exploring this relationship at different temporal scales to fully understand the actual links between iWUE and secondary growth dynamics.
Functional Ecology | 2017
Georg von Arx; Alberto Arzac; Patrick Fonti; David Frank; Roman Zweifel; Andreas Rigling; Lucía Galiano; Arthur Gessler; José Miguel Olano
Summary Non-structural carbohydrates (NSC) play a crucial role in tree resistance and resilience to drought. Stem sapwood parenchyma is among the largest storage tissue for NSC in mature trees. However, there is a limited mechanistic understanding of how NSC reserves, stem parenchyma abundance, and growth rates are interrelated, and how they respond to changing water availability. We quantified NSC, ray parenchyma abundance and ring width along four successive 5-year radial sapwood segments of the stem of 40 mature Pinus sylvestris trees from a 10-year irrigation experiment conducted at a xeric site in Switzerland. Percentage of ray volume (PERPAR) varied from 3.75 to 8.94% among trees, but showed low intra-individual variability. PERPAR responded positively to irrigation with a lag of several years, but was unrelated to %NSC. %NSC was lower in wider rings. However, wider rings still contained a larger NSC pool that was positively related to next years ring growth. Our results suggest that stem ray parenchyma does not limit NSC storage capacity, but responds to long-term environmental drivers with years of delay. The observed carbon allocation patterns indicate a prioritization of storage over growth independent of growth conditions, likely as a mechanism to ensure long-term survival. Furthermore, NSC pool size proved to be a determinant for the inter-annual auto-correlation in tree-ring growth. Our study highlights the importance of long-term multi-parameter studies to better understand tree responses to environmental variability at different time-scales. This article is protected by copyright. All rights reserved.
Trees-structure and Function | 2015
José Miguel Olano; Ana I. García-Cervigón; Alberto Arzac; Vicente Rozas
Key messageSex and site conditions modulate intra- and inter-annual secondary growth and its climatic sensitivity in a dioecious Mediterranean conifer.AbstractDivergent evolutionary pressures associated with differential reproductive costs in dioecious trees may lead to sex-related variation in non-reproductive functions. Sex-related differences may be site-dependent, with different outcomes depending on environmental conditions. We explored the effects of sex and environmental conditions on the climatic control of annual secondary growth and intra-annual wood density fluctuations (IADF) of a dioecious conifer (Juniperus thurifera L.) growing in two sites with contrasting hydrological conditions under a continental Mediterranean climate. Different sex-related strategies had variable effects on relative secondary growth, with females outperforming males under more favorable hydrological conditions, and males outperforming females under water-limited conditions. Ring width and IADF formation were driven by climatic factors occurring at different temporal scales. Tree-ring growth depended on factors acting prior to the initiation of the xylogenesis and to conditions directly affecting the duration and pace of cambial activity, and ring width, therefore, integrated a complex signal of factors occurring over a relatively long period, and on an annual cycle. In contrast, IADFs responded to singular short-term events that alleviated drought and promoted cambial reactivation during the summer arrest. Female trees showed a more opportunistic water use, displayed in the stronger ring-width response to June–July conditions. Enhanced cambial sensitivity in females set a lower threshold for IADF occurrence, leading to a higher frequency of IADFs irrespective of site. Intra-annual and inter-annual female growth patterns reflect an opportunistic strategy to benefit from favorable climatic windows.
Frontiers in Plant Science | 2015
Georg von Arx; Alberto Arzac; José Miguel Olano; Patrick Fonti
Ray parenchyma is an essential tissue for tree functioning and survival. This living tissue plays a major role for storage and transport of water, nutrients, and non-structural carbohydrates (NSC), thus regulating xylem hydraulics and growth. However, despite the importance of rays for tree carbon and water relations, methodological challenges hamper knowledge about ray intra- and inter-tree variability and its ecological meaning. In this study we provide a methodological toolbox for soundly quantifying spatial and temporal variability of different ray features. Anatomical ray features were surveyed in different cutting planes (cross-sectional, tangential, and radial) using quantitative image analysis on stem-wood micro-sections sampled from 41 mature Scots pines (Pinus sylvestris). The percentage of ray surface (PERPAR), a proxy for ray volume, was compared among cutting planes and between early- and latewood to assess measurement-induced variability. Different tangential ray metrics were correlated to assess their similarities. The accuracy of cross-sectional and tangential measurements for PERPAR estimates as a function of number of samples and the measured wood surface was assessed using bootstrapping statistical technique. Tangential sections offered the best 3D insight of ray integration into the xylem and provided the most accurate estimates of PERPAR, with 10 samples of 4 mm2 showing an estimate within ±6.0% of the true mean PERPAR (relative 95% confidence interval, CI95), and 20 samples of 4 mm2 showing a CI95 of ±4.3%. Cross-sections were most efficient for establishment of time series, and facilitated comparisons with other widely used xylem anatomical features. Earlywood had significantly lower PERPAR (5.77 vs. 6.18%) and marginally fewer initiating rays than latewood. In comparison to tangential sections, PERPAR was systematically overestimated (6.50 vs. 4.92%) and required approximately twice the sample area for similar accuracy. Radial cuttings provided the least accurate PERPAR estimates. This evaluation of ray parenchyma in conifers and the presented guidelines regarding data accuracy as a function of measured wood surface and number of samples represent an important methodological reference for ray quantification, which will ultimately improve the understanding of the fundamental role of ray parenchyma tissue for the performance and survival of trees growing in stressed environments.
Agricultural and Forest Meteorology | 2016
Alberto Arzac; Ana I. García-Cervigón; Sergio M. Vicente-Serrano; Javier Loidi; José Miguel Olano
Dendrochronologia | 2018
Alberto Arzac; Elena A. Babushkina; Patrick Fonti; Viktoriya Slobodchikova; Irina V. Sviderskaya; Eugene A. Vaganov
Journal of Biogeography | 2018
Raúl Sánchez-Salguero; J. Julio Camarero; Vicente Rozas; Mar Génova; José M. Olano; Alberto Arzac; Antonio Gazol; Leocadia Caminero; Ernesto Tejedor; Martin de Luis; Juan Carlos Linares
Agricultural and Forest Meteorology | 2018
Alberto Arzac; Vicente Rozas; Philippe Rozenberg; José Miguel Olano
Tree Physiology | 2017
José Miguel Olano; Noelia González-Muñoz; Alberto Arzac; Vicente Rozas; Georg von Arx; Sylvain Delzon; Ana I. García-Cervigón