Alberto Azzalin
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Azzalin.
Autophagy | 2011
Giulia Barbieri; Silvia Palumbo; Konrad Gabrusiewicz; Alberto Azzalin; Nicoletta Marchesi; Alessandro Spedito; Marco Biggiogera; Elena Sbalchiero; Giuliano Mazzini; Clelia Miracco; Luigi Pirtoli; Bozena Kaminska; Sergio Comincini
Malignant gliomas are the most common and lethal primary central nervous system neoplasms. Several intriguing lines of evidence have recently emerged indicating that the cellular prion protein (PrPC) may exert neuro- and cyto-protective functions: PrPC overexpression protects cultured neurons and also tumor cell lines exposed to various pro-apoptotic stimuli while, on the contrary, PrPC silencing sensitizes Adriamycin-resistant human breast carcinoma cells to TRAIL-mediated cell death. In order to determine if PrPC is involved in the resistance of glial tumors to cell death, the effects of cellular prion protein downregulation by antisense approach were investigated in different human malignant glioma cell lines. PrPC downregulation induced profound morphological changes and significant cell death. In addition, a significant tumor volume reduction was noted after PrPC silencing in a EGFP-GL261 glioma murine model. Investigations of the molecular effects induced by PrPC silencing were carried out on T98G human glioma cells by analysing autophagic as well as typical apoptotic markers (nuclear morphology, caspase-3/7, p53 and PARP-1). The results indicated that apoptosis was not induced after PrPC downregulation while, on the contrary, electron microscopy analysis, and an accumulation of GFP-LC3-II in autophagosomal membranes of GFP-LC3 transfected cells, indicated a predominant activation of autophagy. PrPC silencing also led to induction of LC3-II, increase in Beclin-1 and a concomitant decrease in p62, Bcl-2 and in the phosphorylation of 4E-BP1, a target of mTOR autophagy signaling. In conclusion, our results show for the first time that interfering with the cellular prion protein expression could modulate autophagy-dependent cell death pathways in glial tumor cells.
BioMed Research International | 2009
Sergio Comincini; Mayra Paolillo; Giulia Barbieri; Silvia Palumbo; Elena Sbalchiero; Alberto Azzalin; Marika A. Russo; Sergio Schinelli
In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression. PTEN and MMP9 mRNA levels were also employed to identify subgroups of specimens within the different glioma malignancy grades and to define a gene expression-based diagnostic classification scheme. In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.
Mammalian Genome | 2005
Cristina Uboldi; Igor Del Vecchio; M.G. Foti; Alberto Azzalin; Marianna Paulis; Elena Raimondi; Gabriele Vaccari; Umberto Agrimi; Giovanni Di Guardo; Sergio Comincini; L. Ferretti
The genomic structure of the caprine Doppel gene (PRND) was determined using the ovine sequence as a scaffold to generate PCR fragments that were aligned with a cDNA sequence obtained from testicular mRNA. The caprine gene contains two exons, 89 and >2291 bp long, separated by a 1689-bp intron. Two mRNA isoforms of 3.2 and 4.8 kb were identified in the testis, as well as the exact transcription start site by fluorescently labeled oligonucleotide extension (FLOE). Like in sheep and cattle, the open reading frame (ORF) (537 bp) lies within exon 2 and is very much conserved in sheep (99.3%) and cattle (97%). The intronic sequence is also highly conserved (95.3%) compared with sheep, with the only exception of a 47-bp insertion. The PRND ORF was sequenced in 47 healthy and 17 TSE-affected goats of the Italian Ionica breed. Seven nucleotide positions showed variation: T28C, C65T, A151G, G286A, C385G, T451C, and T528C. Five were commonly represented polymorphisms: T28C, T451C, and T528C are silent mutations at codons L10, L151, and I176, respectively, while A151G and C385G determine a T51A and L129V amino acid change, respectively. The two remaining variants, C65T and G286A, were rare, leading to the amino acid substitutions S22F and E96K, respectively. None of the polymorphisms was significantly relatable to the TSE status, and the same result was obtained by the analysis of the combined haplotypes at the five major polymorphic sites, namely, T28C, C65T, A151G, G286A, and C385G.
British Journal of Haematology | 2005
Erica Travaglino; Sergio Comincini; Chiara Benatti; Alberto Azzalin; Rosanna Nano; Vittorio Rosti; L. Ferretti; Rosangela Invernizzi
We investigated the expression patterns and distribution of Doppel (Dpl), the product of the prion‐like gene PRND, in the leukaemic cell lines HL‐60 and K562 and in bone marrow cells from 44 patients with acute myeloid leukaemia (AML) and 63 patients with myelodysplastic syndrome (MDS). Whereas normal samples were negative or showed very weak expression that was restricted to CD34+ cells, Dpl was detected in both cell lines and in most AML and MDS cases by immunocytochemistry and Western blotting. Quantitative reverse transcription polymerase chain reaction revealed variable mRNA levels in almost all AML and MDS cases, but barely detectable levels in normal bone marrow. These differences were confirmed by in situ hybridization. PRND expression was higher in advanced compared with early MDS (P = 0·01), but Dpl levels did not predict disease progression. In AML there was no correlation between Dpl levels and clinical or laboratory findings. In conclusion, this is the first time that the expression of PRND has been demonstrated in human bone marrow. The molecular mechanism of the observed overexpression is unknown; however, the differential Dpl distribution in AML and MDS versus healthy subjects makes it a possible leukaemia‐associated antigen that could be useful for diagnostic and therapeutic purposes.
Scientific Reports | 2016
Viola Camilla Scoffone; Laurent R. Chiarelli; Vadim Makarov; Gilles Brackman; Aygun Israyilova; Alberto Azzalin; Federico Forneris; Olga B. Riabova; Sventlana Savina; Tom Coenye; Giovanna Riccardi; Silvia Buroni
Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia.
Analytical Cellular Pathology | 2008
Elena Sbalchiero; Alberto Azzalin; Silvia Palumbo; Giulia Barbieri; Agustina Arias; Luca Simonelli; L. Ferretti; Sergio Comincini
Doppel, a prion-like protein, is a GPI-membrane anchored protein generally not expressed in the Central Nervous System (CNS) of different mammalian species, including human. Nevertheless, in astrocytomas, a particular kind of glial tumors, the doppel encoding gene (PRND) is over-expressed and the corresponding protein product (Dpl) is ectopically localized in the cytoplasm of the tumor cells. In this study we have analysed the sub-cellular localization of Dpl using double-immunofluorescence staining and confocal microscopy examinations in two astrocytoma-derived human cell lines (IPDDC-A2 and D384-MG). Our results confirmed that Dpl is localized in the cytoplasm of the astrocytoma cells and indicated that it is mostly associated with Lamp-1 and Limp-2 positive lysosomal vesicles and, marginally, to the Golgi apparatus and other cellular organelles. Noticeably, none of the examined tumor cells showed a membrane-Dpl localization. The membrane-associated Dpl expression was restored after the transfection of the astrocytoma cells with mutated Dpl-expression vectors in its glycosylation sites. Additionally, Dpl showed altered expression and traffic using the acidotropic agent ammonium chloride, leading to the accumulation of Dpl in nascent exocytic vesicles. Altogether, these results indicated that in the astrocytic tumor cells Dpl has an altered biosynthetic trafficking, likely derived from abnormal post-translational processes: these modifications do not permit the localization of Dpl in correspondence of the plasma membrane and lead to its intracellular accumulation in the lysosomes. In these proteolytic compartments, the astrocytic tumor cells might provide to the degradation of the excess of a potentially cytotoxic Dpl product.
BioMed Research International | 2010
Paola Rognoni; Laurent R. Chiarelli; Sergio Comincini; Alberto Azzalin; Clelia Miracco; Giovanna Valentini
Doppel (Dpl) is a membrane-bound glycoprotein mainly expressed in the testis of adult healthy people. It is generally absent in the central nervous system, but its coding gene sequence is ectopically expressed in astrocytoma specimens and in derived cell lines. In this paper, we investigated the expression and the biochemical features of Dpl in a panel of 49 astrocytoma specimens of different WHO malignancy grades. As a result, Dpl was expressed in the majority of the investigated specimens (86%), also including low grade samples. Importantly, Dpl exhibited different cellular localizations and altered glycan moieties composition, depending on the tumor grade. Most low-grade astrocytomas (83%) showed a membrane-bound Dpl, like human healthy testis tissue, whereas the majority of high-grade astrocytomas (75%) displayed a cytosolic Dpl. Deglycosylation studies with N-glycosidase F and/or neuraminidase highlighted defective glycan moieties and an unexpected loss of sialic acid. To find associations between glial tumor progression and Dpl biochemical features, predictive bioinformatics approaches were produced. In particular, Decision tree and Nomogram analysis showed well-defined Dpl-based criteria that separately clustered low-and high-grade astrocytomas. Taken together, these findings show that in astrocytomas, Dpl undergoes different molecular processes that might constitute additional helpful tools to characterize the glial tumor progression.
Central European Journal of Biology | 2006
Sergio Comincini; Igor Del Vecchio; Alberto Azzalin
Doppel is a newly recognized prion-like molecule encoded by a novel gene locus, PRND, located on the same chromosomal region of the prion (PRNP) coding gene. Doppel was considered a paralogue and the first member of the prion-gene family, possibly originated through an ancestral gene duplication event. Prion and doppel have different expression patterns, suggesting that the gene products exhibit different biological functions. Actually, doppel is not involved in the aetiology of the Transmissible Spongiform Encephalopathies (TSEs) or “prion diseases” and is highly expressed only within the testicular tissue, suggesting an important physiological role in the process of spermatogenesis. The restricted spatial and temporal expression profile of doppel has suggested its investigation within particular pathological contexts, such as cancers, showing that it might represent a novel and attractive diagnostic molecular marker and that might provide insights into the regulatory pathways of tumor-cell transformation.
Neoplasia | 2017
Alberto Azzalin; Giulia Nato; Elena Parmigiani; Francesca Garello; Annalisa Buffo; Lorenzo Magrassi
Glucose transport across glioblastoma membranes plays a crucial role in maintaining the enhanced glycolysis typical of high-grade gliomas and glioblastoma. We tested the ability of two inhibitors of the glucose transporters GLUT/SLC2A superfamily, indinavir (IDV) and ritonavir (RTV), and of one inhibitor of the Na/glucose antiporter type 2 (SGLT2/SLC5A2) superfamily, phlorizin (PHZ), in decreasing glucose consumption and cell proliferation of human and murine glioblastoma cells. We found in vitro that RTV, active on at least three different GLUT/SLC2A transporters, was more effective than IDV, a specific inhibitor of GLUT4/SLC2A4, both in decreasing glucose consumption and lactate production and in inhibiting growth of U87MG and Hu197 human glioblastoma cell lines and primary cultures of human glioblastoma. PHZ was inactive on the same cells. Similar results were obtained when cells were grown in adherence or as 3D multicellular tumor spheroids. RTV treatment but not IDV treatment induced AMP-activated protein kinase (AMPKα) phosphorylation that paralleled the decrease in glycolytic activity and cell growth. IDV, but not RTV, induced an increase in GLUT1/SLC2A1 whose activity could compensate for the inhibition of GLUT4/SLC2A4 by IDV. RTV and IDV pass poorly the blood brain barrier and are unlikely to reach sufficient liquoral concentrations in vivo to inhibit glioblastoma growth as single agents. Isobologram analysis of the association of RTV or IDV and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or 4-methyl-5-oxo-2,3,4,6,8-pentazabicyclo[4.3.0]nona-2,7,9-triene-9-carboxamide (TMZ) indicated synergy only with RTV on inhibition of glioblastoma cells. Finally, we tested in vivo the combination of RTV and BCNU on established GL261 tumors. This drug combination increased the overall survival and allowed a five-fold reduction in the dose of BCNU.
Analytical Cellular Pathology | 2008
Alberto Azzalin; Elena Sbalchiero; Giulia Barbieri; Silvia Palumbo; Cristina Muzzini; Sergio Comincini
Doppel (Dpl) protein is the paralogue of the cellular prion (PrP) protein. In humans, Dpl is expressed almost exclusively in testis where it is involved in spermatogenesis. Recently, the protein has been described to be ectopically expressed in astrocytomas and its potential association to the brain tumor malignancy progression has been advanced. In this study, we aimed to investigate in vitro the potential involvement of Dpl in the tumor cell migration: to this purpose, Dpl expression was reduced in the IPDDC-A2 astrocytoma-derived cell line, by means of antisense and siRNA approaches; migration rates were then evaluated by means of a scratch wound healing assay. As a result, the cellular migration was sensibly reduced after Dpl silencing. Following a complementary approach, in HeLa cells, showing very low endogenous Dpl expression, the protein expression was induced by transfection and stabilization of an eukaryotic expression vector containing the doppel gene coding sequence. These stably Dpl-overexpressing cells revealed a significant increase in the migration rate, compared to untreated and control cells. In addition, Dpl-forced expression induced substantial changes in the cell morphology. Of note, in these cells, viability examination by means of tetrazolium-based assay did not reveal differences in the proliferation; on the contrary, a variation in density-dependent growth, leading to an increase of cell contact inhibition was highlighted. These results, in conclusion, might suggest a potential and functional role for Dpl in tumor cells migratory and morphological behaviours and address to future gene-targeted therapeutic interventions.