Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Barros is active.

Publication


Featured researches published by Alberto Barros.


The Lancet | 2004

Genomic imprinting in disruptive spermatogenesis.

Cristina Joana Marques; Filipa Carvalho; Mário Sousa; Alberto Barros

The possibility of imprinting disease transmission by assisted reproductive technologies has been raised after births of children with Angelmans and Beckwith-Wiedemanns syndromes. To investigate whether imprinting defects were associated with disturbed spermatogenesis, we studied two oppositely imprinted genes in spermatozoan DNA from normozoospermic and oligozoospermic patients. In the mesodermal specific transcript gene (MEST), bisulphite genomic sequencing showed that maternal imprinting was correctly erased in all 123 patients. However, methylation of the H19 gene did not change in any of 27 normozoospermic individuals (0%, 95% CI 0-13%), compared with methylation changes in eight moderate (17%, 8-31%, p=0.026) and 15 severe (30%, 18-45%, p=0.002) oligozoospermic patients. Our data suggest an association between abnormal genomic imprinting and hypospermatogenesis, and that spermatozoa from oligozoospermic patients carry a raised risk of transmitting imprinting errors.


Molecular Human Reproduction | 2008

Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia

Cristina Joana Marques; Paula Costa; B. Vaz; Filipa Carvalho; Susana Fernandes; Alberto Barros; Mário Sousa

Genomic imprinting marks in the male germ line are already established in the adult germinal stem cell population. We studied the methylation patterns of H19 and MEST imprinted genes in sperm of control and oligozoospermic patients, by bisulphite genomic sequencing. We here report that 7 out of 15 (46.7%) patients with a sperm count below 10 x 10(6)/ml display defective methylation of H19 and/or MEST imprinted genes. In these cases, hypomethylation was observed in 5.54% (1.2-8.3%) and complete unmethylation in 2.95% (0-5.9%) of H19 clones. Similarly, for the CTCF-binding site 6, hypomethylation occurred in 4.8% (1.2-8.9%) and complete unmethylation in 3.7% (0-6.9%) of the clones. Conversely, hypermethylation occurred in 8.3% (3.8-12.2%) and complete methylation in 6.1% (3.8-7.6%) of MEST clones. Of the seven patients presenting imprinting errors, two had both H19 hypomethylation and MEST hypermethylation, whereas five displayed only one imprinted gene affected. The frequency of patients with MEST hypermethylation was highest in the severe oligozoospermia group (2/5 patients), whereas H19 hypomethylation was more frequent in the moderate oligozoospermia (2/5 patients). In all cases, global sperm genome methylation analysis (LINE1 transposon) suggested that defects were specific for imprinted genes. These findings could contribute to an explanation of the cause of Silver-Russell syndrome in children born with H19 hypomethylation after assisted reproductive technologies (ART). Additionally, unmethylation of the CTCF-binding site could lead to inactivation of the paternal IGF2 gene, and be linked to decreased embryo quality and birth weight, often associated with ART.


Fertility and Sterility | 2010

Methylation defects of imprinted genes in human testicular spermatozoa.

C. Joana Marques; Tânia Francisco; S. G. Sousa; Filipa Carvalho; Alberto Barros; Mário Sousa

OBJECTIVE To study the methylation imprinting marks of two oppositely imprinted genes, H19 and MEST/PEG1, in human testicular spermatozoa from azoospermic patients with different etiologies. Testicular spermatozoa are often used in intracytoplasmic sperm injection for treatment of male factor infertility, but the imprinting status of these cells is currently unknown. DESIGN Experimental prospective study. SETTING University research laboratory and private in vitro fertilization (IVF) clinic. PATIENT(S) A total of 24 men, five with anejaculation, five with secondary obstructive azoospermia, five with primary obstructive azoospermia, and nine with secretory azoospermia due to hypospermatogenesis. INTERVENTION(S) Spermatozoa were isolated by micromanipulation from testicular biopsies. MAIN OUTCOME MEASURE(S) DNA methylation patterns were analyzed using bisulfite genomic sequencing with cloning analysis. RESULT(S) We found H19 complete methylation was statistically significantly reduced in secretory azoospermic patients with hypospermatogenesis, with one patient presenting complete unmethylation. Hypomethylation also affected the CTCF-binding site 6, involved in regulation of IGF2 expression. Regarding the MEST gene, all patients presented complete unmethylation although this was statistically significantly reduced in the anejaculation group. CONCLUSION(S) Testicular spermatozoa from men with abnormal spermatogenesis carry methylation defects in the H19 imprinted gene which also affect the CTCF-binding site, further supporting an association between the occurrence of imprinting errors and disruptive spermatogenesis.


Biochimica et Biophysica Acta | 2012

Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells.

Pedro Oliveira; Marco G. Alves; Luís Rato; Sandra Laurentino; Júlia Silva; Rosália Sá; Alberto Barros; Mário Sousa; Rui A. Carvalho; José E. Cavaco; Sílvia Socorro

BACKGROUND Sertoli cells metabolize glucose producing lactate for developing germ cells. As insulin regulates glucose uptake and its disturbance/insensitivity is associated with diabetes mellitus, we aimed to determine the effect of insulin deprivation in human Sertoli cell (hSC) metabolism and metabolism-associated gene expression. METHODS hSC-enriched primary cultures were maintained in the absence/presence of insulin and metabolite variations were determined by (1)H-NMR. mRNA expression levels of glucose transporters (GLUT1, GLUT3), lactate dehydrogenase (LDHA) and monocarboxylate transporter (MCT4) were determined by RT-PCR. RESULTS Insulin deprivation resulted in decreased lactate production and in decrease of glucose consumption that was completely reverted after 6h. Cells of both groups consumed similar amounts of glucose. In insulin-deprived cells, transcript levels of genes associated to lactate metabolism (LDHA and MCT4) were decreased. Transcript levels of genes involved in glucose uptake exhibited a divergent variation: GLUT3 levels were decreased while GLUT1 levels increased. Insulin-deprived hSCs presented: 1) altered glucose consumption and lactate secretion; 2) altered expression of metabolism-associated genes involved in lactate production and export; 3) an adaptation of glucose uptake by modulating the expression of GLUT1 and GLUT3. GENERAL SIGNIFICANCE This is the first report regarding the effect of insulin-deprivation on hSC metabolism.


PLOS Genetics | 2013

Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1.

Alexandra M Lopes; Kenneth I. Aston; Emma E. Thompson; Filipa Carvalho; João Gonçalves; Ni Huang; Rune Matthiesen; Michiel J. Noordam; Inés Quintela; Avinash Ramu; Catarina Seabra; Amy B. Wilfert; Juncheng Dai; Jonathan M. Downie; Susana Fernandes; Xuejiang Guo; Jiahao Sha; António Amorim; Alberto Barros; Angel Carracedo; Zhibin Hu; Sergey I. Moskovtsev; Carole Ober; Darius A. Paduch; Joshua D. Schiffman; Peter N. Schlegel; Mário Sousa; Douglas T. Carrell; Donald F. Conrad

Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a mans risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.


Epigenetics | 2011

DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages

C. Joana Marques; Maria João Pinho; Filipa Carvalho; Ivan Bièche; Alberto Barros; Mário Sousa

Paternal imprinting marks were shown to be erased in the mouse primordial germ cells and progressively re-established throughout the male germ line development, starting in fetal prospermatogonia and continuing post-natally through the onset of meiosis. We here evaluated imprinting marks in human adult spermatogenic cells and analyzed mRNA and protein expression of DNA Methyltransferases (DNMTs). Spermatogonia A, primary and secondary spermatocytes, round spermatids and elongated spermatids/spermatozoa were isolated by micromanipulation from testicular biopsies of men with normal spermatogenesis. DNA methylation at two imprinted genes, H19 and MEST/PEG1, was analyzed using bisulphite genomic sequencing and DNMTs expression was determined by qRT-PCR and immunofluorescence. H19 was completely methylated at the spermatogonia stage in the analyzed individuals and MEST/PEG1 was completely demethylated, with the exception of few CpGs. The analysis of DNMT1, DNMT3A and 3B expression showed peaks of mRNA transcripts in primary spermatocytes and in mature ejaculated spermatozoa, with DNMT1 transcript level being the most abundant in all cell stages. Immunolocalization showed that DNMT proteins are present throughout the spermatogenic cycle, with stage-specific shuttling between the nucleus and cytoplasm. We conclude that, in humans, methylation imprints are established in spermatogonia A and are maintained in subsequent stages up to elongated spermatid/spermatozoa. Additionally, DNA methyltransferases are expressed throughout human spermatogenesis, possibly maintaining the methylation patterns in order to avoid the transmission of imprinting errors by the male gamete.


International Journal of Andrology | 2011

Influence of 5α-dihydrotestosterone and 17β-estradiol on human Sertoli cells metabolism

Pedro Oliveira; Marco G. Alves; Luís Rato; Júlia Silva; Rosália Sá; Alberto Barros; Mário Sousa; Rui A. Carvalho; José E. Cavaco; Sílvia Socorro

Sertoli cells metabolize glucose, converting it to lactate that is used by developing germ cells for their energy metabolism. Androgens and oestrogens have metabolic roles that reach far beyond reproductive processes. So, the main purpose of this study was to examine the effect of sex steroid hormones on metabolite secretion/consumption in human Sertoli cells. Human Sertoli cell-enriched primary cultures were maintained in a defined medium for 50 h and glucose, pyruvate, lactate and alanine variations were determined using (1) H-NMR spectra analysis, in the absence or presence of 100 nm 17β-estradiol (E(2) ) or 100 nm 5α-dihydrotestosterone (DHT). The mRNA expression levels of glucose transporters, lactate dehydrogenase and monocarboxylate transporters were also determined using semi-quantitative RT-PCR. Cells cultured in the absence (control) or presence of E(2) consumed the same amounts of glucose at similar rates during the 50 h. During the first 15 h of treatment with DHT, glucose consumption and glucose consumption rate were significantly higher. Nevertheless, DHT-treated cells secreted a significantly lower amount of lactate than control and E(2) -treated cells. Such a decrease was concomitant with a significant decrease in lactate dehydrogenase A mRNA levels after 50 h treatment in DHT-treated groups. Finally, alanine production was significantly increased in E(2) -treated cells after 25 h treatment, which indicated a lower redox/higher oxidative state for the cells on those conditions. These results support the existence of a relationship between sex steroid hormones action and energy metabolism, providing the first assessment of androgens and oestrogens as metabolic modulators of human Sertoli cells.


Biochimica et Biophysica Acta | 2012

In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17β-estradiol and suppressed by insulin deprivation

Marco G. Alves; Sílvia Socorro; Joaquina Silva; Alberto Barros; Mário Sousa; José E. Cavaco; Pedro Oliveira

BACKGROUND Several important functions for a successful spermatogenesis are dependent on Sertoli cells (SCs). Besides their unique characteristics as support cells, they produce essential cofactors and metabolites, and are responsible for nurturing the developing germ cells. The continuous production of lipids, phospholipids and proteins by germ cells must require high amounts of metabolic precursors. Thus, we hypothesized that hSCs could produce acetate in a hormonally-regulated manner. METHODS hSC-enriched primary cultures were maintained in the absence of insulin or in the presence of 17β-estradiol (E2) or 5α-dihydrotestosterone (DHT). Acetate production was determined by 1H-NMR. mRNA gene expression levels of Acetyl CoA hydrolase (ACoA Hyd) and Acetyl CoA synthase (ACoA Synt) were determined by RT-PCR. RESULTS hSCs produced high amounts of acetate suggesting that this metabolite should play a key role on the progression of spermatogenesis, namely as a metabolic precursor for the synthesis of cellular constituents. In addition, acetate metabolism proved to be under strict hormonal regulation. In the presence of E2 or DHT, hSCs produced different amounts of acetate. While E2 treatment increased acetate production, increasing ACoA Hyd gene transcript levels, DHT-treated cells showed decreased acetate production, differently modulating the ratio ACoA Hyd/ACoA Synt. Surprisingly, insulin-deprivation completely suppressed acetate production/export and significantly decreased the ACoA Hyd gene transcript levels. GENERAL SIGNIFICANCE Taken together, these results suggest that, although hSCs are primarily described as lactate producers, the elevated production of acetate deserves special attention, in order to clarify the mechanisms behind its hormonal regulation and its role on a successful spermatogenesis.


Systems Biology in Reproductive Medicine | 2009

Estrogen Receptors α and β in Human Testis: Both Isoforms are Expressed

José E. Cavaco; Sandra Laurentino; Alberto Barros; Mário Sousa; Sílvia Socorro

Currently, clinical and experimental evidence point to an essential role of estrogens and estrogen receptors in male fertility. The expression of estrogen receptor α (ERα) and β (ERβ) in human testis has been described. However, some studies were unable to detect ERα, while others report the expression of both isoforms, with ERβ presenting a wide distribution within somatic and germinal testicular cells. This has suggested that estrogens may exert their testicular effects exclusively through ERβ. The present work aims to study the expression of ERα and ERβ in testicular biopsies of men with conserved and disrupted spermatogenesis, in order to better clarify the positive cell populations. Human testicular tissue was obtained from 10 men undergoing testicular biopsy for infertility relief due to azoospermia: two patients had secondary obstructive azoospermia with conserved spermatogenesis, five had Sertoli cell-only syndrome, two had hypospermatogenesis and one had meiotic arrest. Reverse-transcription polymerase chain reaction (RT-PCR) allowed the detection of both ERα and ERβ mRNAs in all samples. Immunohistochemistry revealed that ERα was present in Leydig cells, Sertoli cells, spermatogonia, spermatocytes, round spermatids and elongated spermatids/spermatozoa, while ERβ was present in the same cell types except spermatogonia and Sertoli cells. This study demonstrates ERα mRNA expression in human testis and describes its localization in somatic and germ cell subtypes. These findings suggest that both ER isoforms are involved in the control of testicular function.


European Journal of Human Genetics | 2002

Unique (Y;13) translocation in a male with oligozoospermia: cytogenetic and molecular studies.

Cláudia Alves; Filipa Carvalho; Nieves Cremades; Mário Sousa; Alberto Barros

The incidence of Y/autosome translocations is low. Whereas involvement of non-acrocentric chromosomes often leads to infertility, cases related with acrocentric chromosomes are usually familial with no or minimal effect on fertility. A de novo (Yp/13p) translocation was found in a 32-year-old male referred for severe oligozoospermia. Conventional cytogenetic procedures (GTG, CBG and NOR banding) and molecular cytogenetic techniques (Fluorescence In Situ Hybridization, FISH) were performed on high-resolution chromosomes obtained after peripheral blood lymphocyte culture as also on interphase nuclei of spermatogenic cells from semen samples. Screening of AZF microdeletions in the Yq11.2 region known to be involved with spermatogenesis defects was also performed. GTG banding showed a (Yp/13p) translocation in all scored metaphases. CBG and NOR staining of the derivative chromosome revealed the maintenance of Yq heterochromatin and of the 13p NOR region. FISH with centromeric Y and 13/21 probes, SRY specific probe and X/Y (p and q arms) sub-telomeric probes gave the expected number/location of fluorescent signals. Hybridisation with a pan-telomeric repeat (TTAGGG) probe showed an absence of the telomeric sequences at the fusion point of the rearranged chromosome. FISH analysis with probes to chromosomes X, Y, 13 and 18 showed an abnormal segregation of the translocated chromosome during meiosis I, which explains that only 13.6% of the secondary spermatocytes were normal. Most of these became arrested, as after meiosis II the large majority of the round spermatids were normal (70%), as were in consequence most of the sperm (85.1%). Multiplex-PCR confirmed the intactness of the SRY region and showed absence of AZF microdeletions. We report a novel de novo (Yp;13p) translocation characterised by loss of the 13p and Yp telomeres. Meiotic studies using FISH demonstrated meiosis I chromosome unpairing and mal segregation that justifies the severe oligozoospermia. Although most sperm have a normal chromosomal constitution, preimplantation genetic diagnosis should be considered an option for this patient.

Collaboration


Dive into the Alberto Barros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco G. Alves

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Júlia Silva

Instituto Nacional de Saúde Dr. Ricardo Jorge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge