Alberto Benito-Martin
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Benito-Martin.
Frontiers in Immunology | 2015
Alberto Benito-Martin; Angela Di Giannatale; Sophia Ceder; Héctor Peinado
Tumors must evade the immune system to survive and metastasize, although the mechanisms that lead to tumor immunoediting and their evasion of immune surveillance are far from clear. The first line of defense against metastatic invasion is the innate immune system that provides immediate defense through humoral immunity and cell-mediated components, mast cells, neutrophils, macrophages, and other myeloid-derived cells that protect the organism against foreign invaders. Therefore, tumors must employ different strategies to evade such immune responses or to modulate their environment, and they must do so prior metastasizing. Exosomes and other secreted vesicles can be used for cell–cell communication during tumor progression by promoting the horizontal transfer of information. In this review, we will analyze the role of such extracellular vesicles during tumor progression, summarizing the role of secreted vesicles in the crosstalk between the tumor and the innate immune system.
Scientific Reports | 2015
Luca Musante; Dorota Tataruch; Dongfeng Gu; Alberto Benito-Martin; Giulio Calzaferri; Sinead Aherne; Harry Holthöfer
Urinary extracellular vesicles provide a novel source for valuable biomarkers for kidney and urogenital diseases: Current isolation protocols include laborious, sequential centrifugation steps which hampers their widespread research and clinical use. Furthermore, large individual urine sample volumes or sizable target cohorts are to be processed (e.g. for biobanking), the storage capacity is an additional problem. Thus, alternative methods are necessary to overcome such limitations. We have developed a practical vesicle isolation technique to yield easily manageable sample volumes in an exceptionally cost efficient way to facilitate their full utilization in less privileged environments and maximize the benefit of biobanking. Urinary vesicles were isolated by hydrostatic dialysis with minimal interference of soluble proteins or vesicle loss. Large volumes of urine were concentrated up to 1/100 of original volume and the dialysis step allowed equalization of urine physico-chemical characteristics. Vesicle fractions were found suitable to any applications, including RNA analysis. In the yield, our hydrostatic filtration dialysis system outperforms the conventional ultracentrifugation-based methods and the labour intensive and potentially hazardous step of ultracentrifugations are eliminated. Likewise, the need for trained laboratory personnel and heavy initial investment is avoided. Thus, our method qualifies as a method for laboratories working with urinary vesicles and biobanking.
Journal of extracellular vesicles | 2017
Mohashin Pathan; Shivakumar Keerthikumar; David Chisanga; Riccardo Alessandro; Ching-Seng Ang; Philip W. Askenase; Arsen O Batagov; Alberto Benito-Martin; Giovanni Camussi; Aled Clayton; Federica Collino; Dolores Di Vizio; Juan M. Falcon-Perez; Pedro Fonseca; Pamali Fonseka; Simona Fontana; Yong Song Gho; An Hendrix; Esther N.M. Nolte-'t Hoen; Nunzio Iraci; Kenneth Kastaniegaard; Thomas Kislinger; Joanna Kowal; Igor V. Kurochkin; Tommaso Leonardi; Yaxuan Liang; Alicia Llorente; Taral R. Lunavat; Sayantan Maji; Francesca Monteleone
ABSTRACT Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture “what the community needs in a tool”. Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines.
Cancer Research | 2017
Pasquale Sansone; Marjan Berishaj; Vinagolu K. Rajasekhar; Claudio Ceccarelli; Qing Chang; Antonio Strillacci; Claudia Savini; Lauren Shapiro; Robert L. Bowman; Chiara Mastroleo; Sabrina De Carolis; Laura Daly; Alberto Benito-Martin; Fabiana Perna; Nicola Fabbri; John H. Healey; Enzo Spisni; Monica Cricca; David Lyden; Massimiliano Bonafè; Jacqueline Bromberg
The hypothesis that microvesicle-mediated miRNA transfer converts noncancer stem cells into cancer stem cells (CSC) leading to therapy resistance remains poorly investigated. Here we provide direct evidence supporting this hypothesis, by demonstrating how microvesicles derived from cancer-associated fibroblasts (CAF) transfer miR-221 to promote hormonal therapy resistance (HTR) in models of luminal breast cancer. We determined that CAF-derived microvesicles horizontally transferred miR-221 to tumor cells and, in combination with hormone therapy, activated an ERlo/Notchhi feed-forward loop responsible for the generation of CD133hi CSCs. Importantly, microvesicles from patients with HTR metastatic disease expressed high levels of miR-221. We further determined that the IL6-pStat3 pathway promoted the biogenesis of onco-miR-221hi CAF microvesicles and established stromal CSC niches in experimental and patient-derived breast cancer models. Coinjection of patient-derived CAFs from bone metastases led to de novo HTR tumors, which was reversed with IL6R blockade. Finally, we generated patient-derived xenograft (PDX) models from patient-derived HTR bone metastases and analyzed tumor cells, stroma, and microvesicles. Murine and human CAFs were enriched in HTR tumors expressing high levels of CD133hi cells. Depletion of murine CAFs from PDX restored sensitivity to HT, with a concurrent reduction of CD133hi CSCs. Conversely, in models of CD133neg, HT-sensitive cancer cells, both murine and human CAFs promoted de novo HT resistance via the generation of CD133hi CSCs that expressed low levels of estrogen receptor alpha. Overall, our results illuminate how microvesicle-mediated horizontal transfer of genetic material from host stromal cells to cancer cells triggers the evolution of therapy-resistant metastases, with potentially broad implications for their control. Cancer Res; 77(8); 1927-41. ©2017 AACR.
Proteomics | 2015
Alberto Benito-Martin; Héctor Peinado
Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small‐scale and high‐throughput studies. However, user‐friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597–2601) report the development of FunRich software, an open‐access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations.
Scientific Reports | 2016
Jing Zhou; Shima Ghoroghi; Alberto Benito-Martin; Hao Wu; Uchenna Unachukwu; Linda Saxe Einbond; Sara R. Guariglia; Héctor Peinado; Stephen Redenti
Microvesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm–1uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue.
Scientific Reports | 2018
Jing Zhou; Alberto Benito-Martin; Jason Mighty; Lynne Chang; Shima Ghoroghi; Hao Wu; Madeline Wong; Sara R. Guariglia; Petr Baranov; Michael J. Young; Rajendra Gharbaran; Mark M. Emerson; Milica Tesic Mark; Henrik Molina; M. Valeria Canto-Solar; Hector Peinado Selgas; Stephen Redenti
A range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs). Interestingly, mRPC derived EVs contain mRNA, miRNA and proteins associated with multipotency and retinal development. Transcripts enclosed in mRPC EVs, include the transcription factors Pax6, Hes1, and Sox2, a mitotic chromosome stabilizer Ki67, and the neural intermediate filaments Nestin and GFAP. Proteomic analysis of EV content revealed retinogenic growth factors and morphogen proteins. mRPC EVs were shown to transfer GFP mRNA between cell populations. Finally, analysis of EV mediated functional cargo delivery, using the Cre-loxP recombination system, revealed transfer and uptake of Cre+ EVs, which were then internalized by target mRPCs activating responder loxP GFP expression. In summary, the data supports a paradigm of EV genetic material encapsulation and transfer within RPC populations. RPC EV transfer may influence recipient RPC transcriptional and post-transcriptional regulation, representing a novel mechanism of differentiation and fate determination during retinal development.
Scientific Reports | 2018
Jing Zhou; Alberto Benito-Martin; Jason Mighty; Lynne Chang; Shima Ghoroghi; Hao Wu; Madeline Wong; Sara R. Guariglia; Petr Baranov; Michael J. Young; Rajendra Gharbaran; Mark M. Emerson; Milica Tesic Mark; Henrik Molina; M. Valeria Canto-Soler; Hector Peinado Selgas; Stephen Redenti
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
Molecular Aspects of Medicine | 2017
Laura Nogués; Alberto Benito-Martin; Marta Hergueta-Redondo; Héctor Peinado
Archive | 2015
Zhang Guanjing; Chen Xingming; Ge Xinke; Luca Musante; Mayank Saraswat; Alberto Benito-Martin; Kriskine Praneuc; Elena Gulec; Wang Hairong; Zhang Shaopeng; Fang Jingfang; Cheng Jinjing; Liang Yanni; Zhou Rong; Gao Weiming; Xu Zhiyan; Zhou Liang; Liang Haoyuan; Xiao Yingfen; Zheng Huihua; Tang Xiaolang; Li Xiaoyun