Alberto Casti
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Casti.
Current Pharmaceutical Design | 2014
Maria Paola Castelli; Paola Fadda; Angelo Casu; Maria Sabrina Spano; Alberto Casti; Walter Fratta; Liana Fattore
Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats.
Psychoneuroendocrinology | 2013
M. Paola Castelli; Alberto Casti; Angelo Casu; Roberto Frau; Marco Bortolato; Saturnino Spiga; Maria Grazia Ennas
The enzyme 5α-reductase (5αR) catalyzes the conversion of testosterone and other Δ(4)-3-ketosteroids into their 5α-reduced metabolites. Of the five members of the 5αR family, the type 2 enzyme (5αR2) plays a key role in androgen metabolism, and is abundantly distributed in the urogenital system. Although 5αR2 has been reported to be highly expressed in the brain during early developmental stages, little is currently known on its anatomical and cellular distribution in the adult brain. Thus, the present study was designed to determine the detailed localization of 5αR2 in the adult rat brain, using a highly specific polyclonal antibody against this isoform. Parasagittal and coronal sections revealed 5αR2 immunoreactivity throughout most brain regions, with strong immunolabeling in the layers III and VI of the prefrontal and somatosensory cortex, olfactory bulb, thalamic nuclei, CA3 field of hippocampus, basolateral amygdala and Purkinje cell layer of cerebellum. Lower 5αR2 levels were detected in the hypothalamus and midbrain. Moreover, double labeling fluorescence with confocal laser scanning microscopy (CLSM) revealed that 5αR2 is localized in neurons, but not in glial cells. Specifically, the enzyme was documented in the pyramidal neurons of the cortex by CLSM analysis of simultaneous Golgi-Cox and immunofluorescent staining. Finally, low levels of 5αR2 expression were identified in GABAergic cells across the cortex, hippocampus and striatum. These findings show that, in the adult brain, 5αR2 is distributed in critical regions for behavioral regulation, suggesting that the functional role of this isoform is present throughout the entire lifespan of the individual.
The Journal of Neuroscience | 2014
X Miriam Melis; Claudia Sagheddu; Marta De Felice; Alberto Casti; Camilla Madeddu; X Saturnino Spiga; Anna Lisa Muntoni; Ken Mackie; Giovanni Marsicano; Giancarlo Colombo; Maria Paola Castelli; Marco Pistis
The progressive predominance of rewarding effects of addictive drugs over their aversive properties likely contributes to the transition from drug use to drug dependence. By inhibiting the activity of DA neurons in the VTA, GABA projections from the rostromedial tegmental nucleus (RMTg) are well suited to shift the balance between drug-induced reward and aversion. Since cannabinoids suppress RMTg inputs to DA cells and CB1 receptors affect alcohol intake in rodents, we hypothesized that the endocannabinoid system, by modulating this pathway, might contribute to alcohol preference. Here we found that RMTg afferents onto VTA DA neurons express CB1 receptors and display a 2-arachidonoylglycerol (2-AG)-dependent form of short-term plasticity, that is, depolarization-induced suppression of inhibition (DSI). Next, we compared rodents with innate opposite alcohol preference, the Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats. We found that DA cells from alcohol-naive sP rats displayed a decreased probability of GABA release and a larger DSI. This difference was due to the rate of 2-AG degradation. In vivo, we found a reduced RMTg-induced inhibition of putative DA neurons in sP rats that negatively correlated with an increased firing. Finally, alcohol failed to enhance RMTg spontaneous activity and to prolong RMTg-induced silencing of putative DA neurons in sP rats. Our results indicate functional modifications of RMTg projections to DA neurons that might impact the reward/aversion balance of alcohol attributes, which may contribute to the innate preference observed in sP rats and to their elevated alcohol intake.
Neuropsychopharmacology | 2005
Marco Bortolato; Gian Nicola Aru; Mauro Fà; Roberto Frau; Marco Orru; Paola Salis; Alberto Casti; Grant Christopher Luckey; Giampaolo Mereu; Gian Luigi Gessa
Although substantial evidence has shown interactions between glutamatergic and dopaminergic systems play a cardinal role in the regulation of attentional processes, their involvement in informational filtering has been poorly investigated. Chiefly, little research has focused on functional correlations between the dopaminergic system and the mechanism of action of N-methyl-D-aspartate (NMDA) receptor antagonists on sensorimotor gating. The present study was targeted at evaluating whether the activation of D1 and D2 receptors is able to interact with the disruption of prepulse inhibition (PPI) of startle mediated by dizocilpine, a selective, noncompetitive NMDA receptor antagonist. We tested the effects of SKF 38393 ((±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol) (10 mg/kg, s.c.), a selective D1 agonist, and quinpirole (0.3, 0.6 mg/kg, s.c.), a D2 agonist, in rats, per se and in cotreatment with different doses of dizocilpine, ranging from 0.0015 to 0.15 mg/kg (s.c.). Subsequently, the effect of the D1 antagonist SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (0.05, 0.1 mg/kg, s.c.) on PPI disruptions mediated by dizocilpine and by combination of dizocilpine and SKF 38393 was tested. Two further experiments were performed to verify whether the synergic effect of the D1 agonist with dizocilpine was counteracted by effective doses of haloperidol (0.1, 0.5 mg/kg, i.p.) and clozapine (5, 10 mg/kg, i.p.). All experiments were carried out using standard procedures for the assessment of PPI of the acoustic startle reflex. SKF 38393, while unable to impair sensorimotor gating alone, induced PPI disruption in cotreatment with 0.05 and 0.15 mg/kg of dizocilpine, both ineffective per se. Furthermore, this effect was reversed by SCH 23390, but not by haloperidol or clozapine. Conversely, no synergistic effect was exhibited between quinpirole and dizocilpine, at any given dose. These findings suggest that D1, but not D2 receptors, enhance the disruptive effect of dizocilpine on PPI.
Neuropsychopharmacology | 2007
Roberto Frau; Marco Orru; Mauro Fà; Alberto Casti; Mario Manunta; Nicola Fais; Giampaolo Mereu; GianLuigi Gessa; Marco Bortolato
The anticonvulsant topiramate (TPM) has been recently proposed as a novel adjuvant therapy for bipolar disorder and schizophrenia, yet its efficacy remains controversial. As both disorders are characterized by gating deficits, we tested the effects of TPM on the behavioral paradigm of prepulse inhibition (PPI) of the acoustic startle response, a validated animal model of sensorimotor gating. TPM (10, 18, 32, 58, 100 mg/kg, intraperitoneal, i.p.) enhanced PPI in rats in a dose-dependent fashion, prevented the PPI reduction mediated by the dopaminergic agonist apomorphine (0.25 mg/kg, subcutaneous, s.c.) and potentiated the effects of the antipsychotic drugs haloperidol (0.05, 0.1 mg/kg, i.p.) and clozapine (2.5, 5 mg/kg, i.p.). Conversely, TPM elicited no significant effect on the PPI disruption mediated by the NMDA receptor antagonist dizocilpine (0.05, 0.1 mg/kg, s.c.) and surprisingly antagonized the attenuation of dizocilpine-induced PPI disruption mediated by clozapine (5 mg/kg, i.p.). Our results suggest that TPM may exert diverse actions on the neural substrates of sensorimotor gating. While the pharmacological mechanisms of such effects are still elusive, our findings might contribute to shed light on some controversies on the therapeutic action of TPM, and point to this drug as a putative novel adjuvant therapy for some clusters of gating disturbances.
Schizophrenia Research | 2015
Roberto Frau; Federico Abbiati; Valentina Bini; Alberto Casti; Donatella Caruso; Paola Devoto; Marco Bortolato
BACKGROUND Cogent evidence has shown that schizophrenia vulnerability is enhanced by psychosocial stress in adolescence, yet the underpinnings of this phenomenon remain elusive. One of the animal models that best capture the relationship between juvenile stress and schizophrenia is isolation rearing (IR). This manipulation, which consists in subjecting rats to social isolation from weaning through adulthood, results in neurobehavioral alterations akin to those observed in schizophrenia patients. In particular, IR-subjected rats display a marked reduction of the prepulse inhibition (PPI) of the startle reflex, which are posited to reflect imbalances in dopamine neurotransmission in the nucleus accumbens (NAcc). We recently documented that the key neurosteroidogenic enzyme 5α-reductase (5αR) plays an important role in the dopaminergic regulation of PPI; given that IR leads to a marked down-regulation of this enzyme in the NAcc, the present study was designed to further elucidate the functional role of 5αR in the regulation of PPI of IR-subjected rats. METHODS We studied the impact of the prototypical 5αR inhibitor finasteride (FIN) on the PPI deficits and NAcc steroid profile of IR-subjected male rats, in comparison with socially reared (SR) controls. RESULTS FIN (25-100 mg/kg, i.p.) dose-dependently countered IR-induced PPI reduction, without affecting gating integrity in SR rats. The NAcc and striatum of IR-subjected rats displayed several changes in neuroactive steroid profile, including a reduction in pregnenolone in both SR and IR-subjected groups, as well as a decrease in allopregnanolone content in the latter group; both effects were significantly opposed by FIN. CONCLUSIONS These results show that 5αR inhibition counters the PPI deficits induced by IR, possibly through limbic changes in pregnenolone and/or allopregnanolone concentrations.
Journal of Anatomy | 2010
Michela Isola; Margherita Cossu; Denise Massa; Alberto Casti; Paola Solinas; Maria Serenella Lantini
In this study, which supplements a recent article on the localization of statherin in human major salivary glands, we investigated the intracellular distribution of this peptide in minor salivary glands by immunogold cytochemistry at the electron microscopy level. In the lingual serous glands of von Ebner, gold particles were found in serous granules of all secreting cells, indicating that statherin is released through granule exocytosis. In buccal and labial glands, mostly composed of mucous tubuli, statherin reactivity was detected in the serous element, which represents only a small population of the glandular parenchyma. In these serous cells, however, statherin labeling was absent in secretory granules and restricted to small cytoplasmic vesicles near or partially fused with granules. Vesicle labeling could be related to the occurrence of an alternative secretory pathway for statherin in buccal and labial glands.
PLOS ONE | 2014
M. Paola Castelli; Camilla Madeddu; Alberto Casti; Angelo Casu; Paola Casti; Maria Scherma; Liana Fattore; Paola Fadda; M. Grazia Ennas
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.
RSC Advances | 2014
Claudia Mugnaini; Valentina Pedani; Daniela Giunta; Barbara Sechi; Maurizio Solinas; Alberto Casti; Maria Paola Castelli; Gianluca Giorgi; Federico Corelli
We have previously reported the synthesis and the pharmacological characterization of a family of methyl 2-(acylamino)thiophene-3-carboxylates as GABAB positive allosteric modulators active both in vitro and in vivo. In the present work, we describe the synthesis of new compounds based on the bioisosteric replacement of the ester moiety with amido or heterocyclic groups as well as of thieno[2,3-d]pyrimidine derivatives as rigid analogues thereof. 4H-Thieno[2,3-d][1,3]oxazin-4-ones were used as synthetic intermediates for the preparation of some of these compounds. The structures of oxazinones 11b, 16, and 17 were assigned by X-ray crystallographic studies, which definitely ruled out the isomeric beta-lactam structure previously hypothesized for these compounds. None of the new molecules exhibited significant activity at the GABAB receptor, either as allosteric or orthosteric ligands.
Italian journal of anatomy and embryology | 2015
Alberto Casti; Paola Solinas; Michela Isola; Francesca Broccia; Romina Vargiu; Raffaella Isola
Diabetic cardiomyopathy involves both cardiac and large vessels alterations in their biochemical and biomechanical properties. Part of these dysfunctions is due to ROS overproduction and advanced glycated end-products (AGEs) synthesis caused by high blood glucose concentrations (1). Epidemiological studies usually ignore sexgender outcomes of diabetes that has higher cardiovascular risk in women than in men (2). The aim of the present study was to assess the effects of diabetes on aorta, portal vein and myocardium morphology in females Wistar rats. Diabetes was induced by a single dose of streptozotocin 65 mg/kg, and, after 4 and half months, we evaluated the cardiovascular remodelling by light and transmission electron microscopy (TEM). Paraformaldehyde fixed samples of aorta and portal vein were stained with Masson Trichrome method (for collagen fibers), Weigert’s stain (for elastic fibers), Hematoxylin and Eosin (for nuclei), and underwent to morphometric analysis. TEM samples were prepared accordingly to common protocols. Morphometric analysis performed on diabetic aortas showed a reduction of tunica media thickness, but the internal diameter width or the lumen cross-area was unchanged compared to controls. The number of smooth muscle cells increased in tunica media of diabetic aortas. The main change observed in diabetic portal veins was a reduction of the area occupied by elastic fibers in tunica adventitia. TEM observations of papillary muscles did not reveal any changes in the sarcomere lengths across the two experimental groups. These results display slight differences on what was reported in male rats (3) and account for a different development of diabetes in female subjects.