Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Cenci is active.

Publication


Featured researches published by Alberto Cenci.


Science | 2014

The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

Lorenzo Carretero-Paulet; Alexis Dereeper; Gaëtan Droc; Romain Guyot; Marco Pietrella; Chunfang Zheng; Adriana Alberti; François Anthony; Giuseppe Aprea; Jean-Marc Aury; Pascal Bento; Maria Bernard; Stéphanie Bocs; Claudine Campa; Alberto Cenci; Marie Christine Combes; Dominique Crouzillat; Corinne Da Silva; Loretta Daddiego; Fabien De Bellis; Stéphane Dussert; Olivier Garsmeur; Thomas Gayraud; Valentin Guignon; Katharina Jahn; Véronique Jamilloux; Thierry Joët; Karine Labadie; Tianying Lan; Julie Leclercq

Coffee, tea, and chocolate converge Caffeine has evolved multiple times among plant species, but no one knows whether these events involved similar genes. Denoeud et al. sequenced the Coffea canephora (coffee) genome and identified a conserved gene order (see the Perspective by Zamir). Although this species underwent fewer genome duplications than related species, the relevant caffeine genes experienced tandem duplications that expanded their numbers within this species. Scientists have seen similar but independent expansions in distantly related species of tea and cacao, suggesting that caffeine might have played an adaptive role in coffee evolution. Science, this issue p. 1181; see also p. 1124 The genetic origins of coffee’s constituents reveal intriguing links to cacao and tea. Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Database | 2013

The Banana Genome Hub

Gaëtan Droc; Delphine Larivière; Valentin Guignon; Nabila Yahiaoui; Dominique This; Olivier Garsmeur; Alexis Dereeper; Chantal Hamelin; Xavier Argout; Jean-François Dufayard; Juliette Lengellé; Franc-Christophe Baurens; Alberto Cenci; Bertrand Pitollat; Angélique D’Hont; Manuel Ruiz; Mathieu Rouard; Stéphanie Bocs

Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/


Plant Cell Tissue and Organ Culture | 2015

Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica

Roberto Bobadilla Landey; Alberto Cenci; Romain Guyot; Benoı̂t Bertrand; Frederic Georget; Eveline Dechamp; Juan-Carlos Herrera; Jamel Aribi; Philippe Lashermes; Hervé Etienne

AbstractnLong-term cell cultures were used in coffee to study the cytological, genetic and epigenetic changes occurring during cell culture ageing. The objective was to identify the mechanisms associated with somaclonal variation (SV). Three embryogenic cell lines were established in Coffea arabica (2nxa0=xa04xxa0=xa044) and somatic seedlings were regenerated after 4, 11 and 27xa0months. Phenotyping and AFLP, MSAP, SSAP molecular markers were performed on 199 and 124 plants, respectively. SV were only observed from the 11 and 27-month-old cultures, affecting 30 and 94xa0% of regenerated plants, respectively. Chromosome counts performed on 15 plants showed that normal plants systematically displayed normal chromosome numbers and that, conversely, aneuploidy (monosomy) was systematically found in variants. The allopolyploid structure of C. arabica allowed aneuploid cells to survive and regenerate viable plants. No polymorphic fragments were observed between the AFLP and SSAP electrophoretic profiles of mother plants and those of the in vitro progeny. Methylation polymorphism was low and ranged between 0.087 and 0.149xa0% irrespective of the culture age. The number of methylation changes per plant—normal or variant—was limited and ranged from 0 (55–80xa0% of the plants) to 4. The three cell lines showed similar SV rate increases during cell culture ageing and produced plants with similar molecular patterns indicating a non random process. The results showed that cell culture ageing is highly mutagenic in coffee and chromosomal rearrangements are directly linked to SV. Conversely, the analysis of methylation and transposable elements changes did not reveal any relation between the epigenetic patterns and SV.


BMC Genomics | 2016

Improvement of the banana Musa acuminata reference sequence using NGS data and semi-automated bioinformatics methods

Guillaume Martin; Franc-Christophe Baurens; Gaëtan Droc; Mathieu Rouard; Alberto Cenci; Andrzej Kilian; Alex Hastie; Jaroslav Doležel; Jean-Marc Aury; Adriana Alberti; Françoise Carreel; Angélique D’Hont

BackgroundRecent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata).ResultsWe have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80xa0%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5xa0% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70xa0%. Unknown sites (N) were reduced from 17.3 to 10.0xa0%.ConclusionThe release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in other species.


Scientific Reports | 2016

Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress

Yasmín Zorrilla-Fontanesi; Mathieu Rouard; Alberto Cenci; Ewaut Kissel; Hien Do; Emeric Dubois; Sabine Nidelet; Nicolas Roux; Rony Swennen; Sebastien Carpentier

To explore the transcriptomic global response to osmotic stress in roots, 18u2009mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70–84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress.


PLOS ONE | 2016

A genome-wide association study on the seedless phenotype in banana (#Musa# spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop

Julie Sardos; Mathieu Rouard; Y. Hueber; Alberto Cenci; Katie E. Hyma; Ines Van den houwe; E. Hribova; Brigitte Courtois; Nicolas Roux

Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.


BMC Plant Biology | 2014

The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution

Raviraj Kalunke; Alberto Cenci; Chiara Volpi; Donal M. O’Sullivan; Luca Sella; Francesco Favaron; Felice Cervone; Giulia De Lorenzo; Renato D’Ovidio

BackgroundPolygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species.ResultsBAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species.ConclusionsThe paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.


Data in Brief | 2015

Data for the characterization of the HSP70 family during osmotic stress in banana, a non- model crop

Anne-Catherine Vanhove; Wesley Vermaelen; Alberto Cenci; Rony Swennen; Sebastien Carpentier

Here, we present the data from an in-depth analysis of the HSP70 family in the non-model banana during osmotic stress [1]. First, a manual curation of HSP70 sequences from the banana genome was performed and updated on the Musa hub http://banana-genome.cirad.fr/. These curated protein sequences were then introduced into our in-house Mascot database for an in-depth look at the HSP70 protein profiles in banana meristem cultures and roots during osmotic stress. A 2D-DIGE LC MS/MS approach was chosen to identify and quantify the different paralogs and allelic variants in the HSP70 spots.


Genome Biology and Evolution | 2018

Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana)

Mathieu Rouard; Gaëtan Droc; G. Martin; Julie Sardos; Y. Hueber; Valentin Guignon; Alberto Cenci; B. Geigle; M. S. Hibbins; Nabila Yahiaoui; F.-C. Baurens; V. Berry; Matthew W. Hahn; A. D 'Hont; N. Roux

Abstract Edible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana, as well as among subspecies in M. acuminata. Four particular M. acuminata subspecies have been proposed as the main contributors of edible bananas, all of which radiated in a short period of time in southeastern Asia. Clarifying the evolution of these lineages at a whole-genome scale is therefore an important step toward understanding the domestication and diversification of this crop. This study reports the de novo genome assembly and gene annotation of a representative genotype from three different subspecies of M. acuminata. These data are combined with the previously published genome of the fourth subspecies to investigate phylogenetic relationships. Analyses of shared and unique gene families reveal that the four subspecies are quite homogenous, with a core genome representing at least 50% of all genes and very few M. acuminata species-specific gene families. Multiple alignments indicate high sequence identity between homologous single copy-genes, supporting the close relationships of these lineages. Interestingly, phylogenomic analyses demonstrate high levels of gene tree discordance, due to both incomplete lineage sorting and introgression. This pattern suggests rapid radiation within Musa acuminata subspecies that occurred after the divergence with M. balbisiana. Introgression between M. a. ssp. malaccensis and M. a. ssp. burmannica was detected across the genome, though multiple approaches to resolve the subspecies tree converged on the same topology. To support evolutionary and functional analyses, we introduce the PanMusa database, which enables researchers to exploration of individual gene families and trees.


Scientific Reports | 2016

Erratum: Corrigendum: Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress

Yasmín Zorrilla-Fontanesi; Mathieu Rouard; Alberto Cenci; Ewaut Kissel; Hien Do; Emeric Dubois; Sabine Nidelet; Nicolas Roux; Rony Swennen; Sebastien Carpentier

Collaboration


Dive into the Alberto Cenci's collaboration.

Top Co-Authors

Avatar

Mathieu Rouard

Bioversity International

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewaut Kissel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sebastien Carpentier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gaëtan Droc

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Nicolas Roux

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Y. Hueber

Bioversity International

View shared research outputs
Top Co-Authors

Avatar

Rony Swennen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Julie Sardos

Bioversity International

View shared research outputs
Top Co-Authors

Avatar

Rony Swennen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge