Alberto Lopez-Arraiza
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Lopez-Arraiza.
Journal of Composite Materials | 2014
Hom Nath Dhakal; Zhongyi Zhang; Nick Bennett; Alberto Lopez-Arraiza; Fj Vallejo
Flax and jute fibres are inexpensive and easily available bast fibres and they are extensively used as reinforcement in polymer matrix composites. However, due to their susceptibility to moisture absorption, their application is restricted to non-structural interior products. In this study, flax- and jute fibre-reinforced bioresin-based epoxy biocomposites were fabricated using hand lay-up method and their nanoindentation and flexural properties were investigated. In order to study the effects of water absorption on the nanoindentation and flexural properties, the biocomposites were subjected to water immersion tests by immersing specimens in a de-ionised water bath at 25℃ for a period of 961 h. The nanoindentation behaviour and flexural properties of water-immersed specimens were evaluated and compared alongside with dry specimens. The percentage of moisture uptake and diffusion coefficient (D) was recorded higher for jute-reinforced specimens compared with flax. The flexural properties for both types of specimens were found to decrease with increase in percentage moisture uptake. Comparison of flexural strength and flexural modulus between flax dry and flax wet biocomposites showed that wet samples lost almost 40% of strength and 69% of modulus compared with dry flax samples. The jute wet samples lost 60% of strength and 80% of modulus compared with dry samples. The nanohardness value decreased from 0.207 to 0.135 GPa for dry flax sample after immersion in water.
PLOS ONE | 2014
Estibalitz Goikoetxea; Xabier Murgia; Pablo Serna-Grande; Adolf Valls-i-Soler; Carmen Rey-Santano; Alejandro Rivas; Raúl Antón; Francisco J. Basterretxea; Lorena Miñambres; Estíbaliz Méndez; Alberto Lopez-Arraiza; Juan Luis Larrabe-Barrena; Miguel Angel Gomez-Solaetxe
Objective Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar). Conclusion This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.
International Journal of Environmental Research and Public Health | 2018
Iñigo Aramendia; Unai Fernandez-Gamiz; Alberto Lopez-Arraiza; Carmen Rey-Santano; Victoria Mielgo; Francisco J. Basterretxea; Javier Sancho; Miguel Angel Gomez-Solaetxe
Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4–5 bar, evaluating properties such as the aerodynamic diameter (Da), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 µm was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants.
Polymer Testing | 2014
Hom Nath Dhakal; V. Arumugam; A. Aswinraj; C. Santulli; Zhongyi Zhang; Alberto Lopez-Arraiza
Composites Part B-engineering | 2013
Alberto Lopez-Arraiza; Germán Gémar Castillo; Hom Nath Dhakal; Raul Alberdi
Applied Thermal Engineering | 2017
David Boullosa-Falces; Juan Luis Larrabe Barrena; Alberto Lopez-Arraiza; Jaime Menendez; Miguel Ángel Gómez Solaetxe
Dyna | 2015
Fabuer Ramón-Valencia; Alberto Lopez-Arraiza; Joseba I. Múgica; Jon Aurrekoetxea; Juan C. Suárez; Bladimir Ramón-Valencia
PLOS ONE | 2014
Estibalitz Goikoetxea; Xabier Murgia; Pablo Serna-Grande; Adolf Valls-i-Soler; Carmen Rey-Santano; Alejandro Rivas; Raúl Antón; Francisco J. Basterretxea; Lorena Miñambres; Estíbaliz Méndez; Alberto Lopez-Arraiza; Juan Luis Larrabe-Barrena; Miguel Angel Gomez-Solaetxe
PLOS ONE | 2014
Estibalitz Goikoetxea; Xabier Murgia; Pablo Serna-Grande; Adolf Valls-i-Soler; Carmen Rey-Santano; Alejandro Rivas; Raúl Antón; Francisco J. Basterretxea; Lorena Miñambres; Estíbaliz Méndez; Alberto Lopez-Arraiza; Juan Luis Larrabe-Barrena; Miguel Angel Gomez-Solaetxe
Archive | 2014
Fabuer Ramón-Valencia; Alberto Lopez-Arraiza; Bladimir Ramón-Valencia; Jairo Lenin Ramón-Valencia; José Francisco Ibla-Gordillo