Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Papi is active.

Publication


Featured researches published by Alberto Papi.


Nature Medicine | 2006

Role of deficient type III interferon-λ production in asthma exacerbations

Simon D. Message; Vasile Laza-Stanca; Michael R. Edwards; Peter Wark; Nathan W. Bartlett; Tatiana Kebadze; Patrick Mallia; Luminita A. Stanciu; Hayley L. Parker; Louise Slater; Anita Lewis-Antes; Onn Min Kon; Stephen T. Holgate; Donna E. Davies; Sergei V. Kotenko; Alberto Papi; Sebastian L. Johnston

Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-λs by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations.


European Respiratory Journal | 2003

The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma

B Abraham; Jm Anto; E. Barreiro; Ehd Bel; Giovanni Bonsignore; Jean Bousquet; J Castellsague; Pascal Chanez; F Cibella; G Cuttitta; Barbro Dahlén; S-E Dahlén; N Drews; Ratko Djukanovic; Lm Fabbri; Gert Folkerts; Mina Gaga; C Gratziou; G Guerrera; S. T. Holgate; Ph Howarth; Sl Johnston; F. Kanniess; Johan Kips; Ham Kerstjens; Maria Kumlin; H Magnussen; Fp Nijkamp; N Papageorgiou; Alberto Papi

Since severe asthma is a poorly understood, major health problem, 12 clinical specialist centres in nine European countries formed a European Network For Understanding Mechanisms Of Severe Asthma (ENFUMOSA). In a cross-sectional observational study, a total of 163 subjects with severe asthma were compared with 158 subjects whose asthma was controlled by low doses of inhaled corticosteroids (median dose of beclomethasone equivalents 666 µg). Despite being treated with higher doses of inhaled corticosteroids (median dose 1773 µg) and for a third of the severe asthmatics also being treated with regular, oral-steroid therapy (median daily dose 19 mg), the subjects with severe asthma met the inclusion criteria. The criteria required subjects to have undergone at least one asthma exacerbation in the past year requiring oral steroid treatment. Females dominated the severe asthma group (female/male ratio 4.4:1 versus 1.6:1 in the controlled asthmatics), and compared with controlled asthmatics, they had a predominantly neutrophilic inflammation (sputum neutrophils, 36 versus 28%) and evidence of ongoing mediator release but less atopy. From these findings and other physiological and clinical data reported in this paper, it is suggested that severe asthma might be a different form of asthma rather than an increase in asthma symptoms. The findings prompt for longitudinal studies and interventions to define the mechanisms in severe asthma.


The Journal of Infectious Diseases | 2000

Rhinoviruses Infect the Lower Airways

Nikolaos G. Papadopoulos; Philip J. Bates; Philip G. Bardin; Alberto Papi; Shih H. Leir; David J. Fraenkel; Jon Meyer; Peter M. Lackie; Gwendolyn Sanderson; Stephen T. Holgate; Sebastian L. Johnston

Rhinoviruses are the major cause of the common cold and a trigger of acute asthma exacerbations. Whether these exacerbations result from direct infection of the lower airway or from indirect mechanisms consequent on infection of the upper airway alone is currently unknown. Lower respiratory infection was investigated in vitro by exposing primary human bronchial epithelial cells to rhinoviruses and in vivo after experimental upper respiratory infection of human volunteers. Bronchial infection was confirmed by both approaches. Furthermore, rhinoviruses induced production of interleukin-6, -8, and -16 and RANTES and were cytotoxic to cultured respiratory epithelium. This evidence strongly supports a direct lower respiratory epithelial reaction as the initial event in the induction of rhinovirus-mediated asthma exacerbations. The frequency of infection and the nature of the inflammatory response observed are similar to those of the upper respiratory tract, suggesting that rhinovirus infections may be one of the most important causes of lower in addition to upper respiratory disease.


Journal of Clinical Investigation | 2001

The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics

Paola Panina-Bordignon; Alberto Papi; Margherita Mariani; Pietro Di Lucia; Gianluca Casoni; Cinzia Maria Bellettato; Cecilia Buonsanti; Deborah Miotto; Cristina Mapp; Antonello Villa; Gianluigi Arrigoni; Leonardo M. Fabbri; Francesco Sinigaglia

In vitro polarized human Th2 cells preferentially express the chemokine receptors CCR3, CCR4, and CCR8 and migrate to their ligands: eotaxin, monocyte-derived chemokine (MDC), thymus- and activation-regulated chemokine (TARC), and I-309. We have studied the expression of chemokines and chemokine receptors in the airway mucosa of atopic asthmatics. Immunofluorescent analysis of endobronchial biopsies from six asthmatics, taken 24 hours after allergen challenge, demonstrates that virtually all T cells express IL-4 and CCR4. CCR8 is coexpressed with CCR4 on 28% of the T cells, while CCR3 is expressed on eosinophils but not on T cells. Expression of the CCR4-specific ligands MDC and TARC is strongly upregulated on airway epithelial cells upon allergen challenge, suggesting an involvement of this receptor/ligand axis in the regulation of lymphocyte recruitment into the asthmatic bronchi. In contrast to asthma, T cells infiltrating the airways of patients with chronic obstructive pulmonary disease and pulmonary sarcoidosis produce IFN-gamma and express high levels of CXCR3, while lacking CCR4 and CCR8 expression. These data support the role of CCR4, of its ligands MDC and TARC, and of CCR8 in the pathogenesis of allergen-induced late asthmatic responses and suggest that these molecules could be considered as targets for therapeutic intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production

Simon D. Message; Vasile Laza-Stanca; Patrick Mallia; Hayley L. Parker; Jie Zhu; Tatiana Kebadze; Gwen Sanderson; Onn M. Kon; Alberto Papi; Peter K. Jeffery; Luminita A. Stanciu; Sebastian L. Johnston

Acute exacerbations are the major cause of asthma morbidity, mortality, and health-care costs and are difficult to treat and prevent. The majority of asthma exacerbations are associated with rhinovirus (RV) infection, but evidence supporting a causal relationship is weak and mechanisms are poorly understood. We hypothesized that in asthmatic, but not normal, subjects RV infection would induce clinical, physiologic, and pathologic lower airway responses typical of an asthma exacerbation and that these changes would be related to virus replication and impaired T helper 1 (Th1)/IL-10 or augmented Th2 immune responses. We investigated physiologic, virologic, and immunopathologic responses to experimental RV infection in blood, induced sputum, and bronchial lavage in 10 asthmatic and 15 normal volunteers. RV infection induced significantly greater lower respiratory symptoms and lung function impairment and increases in bronchial hyperreactivity and eosinophilic lower airway inflammation in asthmatic compared with normal subjects. In asthmatic, but not normal, subjects virus load was significantly related to lower respiratory symptoms, bronchial hyperreactivity, and reductions in blood total and CD8+ lymphocytes; lung function impairment was significantly related to neutrophilic and eosinophilic lower airway inflammation. The same virologic and clinical outcomes were strongly related to deficient IFN-γ and IL-10 responses and to augmented IL-4, IL-5, and IL-13 responses. This study demonstrates increased RV-induced clinical illness severity in asthmatic compared with normal subjects, provides evidence of strong relationships between virus load, lower airway virus-induced inflammation and asthma exacerbation severity, and indicates augmented Th2 or impaired Th1 or IL-10 immunity are likely important mechanisms.


Journal of Biological Chemistry | 1999

Rhinovirus Infection Induces Expression of Its Own Receptor Intercellular Adhesion Molecule 1 (ICAM-1) via Increased NF-κB-mediated Transcription

Alberto Papi; Sebastian L. Johnston

Virus infections, the majority of which are rhinovirus infections, are the major cause of asthma exacerbations. Treatment is unsatisfactory, and the pathogenesis unclear. Lower airway lymphocyte and eosinophil recruitment and activation are strongly implicated, but the mechanisms regulating these processes are unknown. Intercellular adhesion molecule-1 (ICAM-1) has a central role in inflammatory cell recruitment to the airways in asthma and is the cellular receptor for 90% of rhinoviruses. We hypothesized that rhinovirus infection of lower airway epithelium might induce ICAM-1 expression, promoting both inflammatory cell infiltration and rhinovirus infection. We therefore investigated the effect of rhinovirus infection on respiratory epithelial cell ICAM-1 expression and regulation to identify new targets for treatment of virus-induced asthma exacerbations. We observed that rhinovirus infection of primary bronchial epithelial cells and the A549 respiratory epithelial cell line increased ICAM-1 cell surface expression over 12- and 3-fold, respectively. We then investigated the mechanisms of this induction in A549 cells and observed rhinovirus-induction of ICAM-1 promoter activity and ICAM-1 mRNA transcription. Rhinovirus induction of ICAM-1 promoter activity was critically dependent upon up-regulation of NF-κB proteins binding to the −187/−178 NF-κB binding site on the ICAM-1 promoter. The principal components of the rhinovirus-induced binding proteins were NF-κB p65 homo- or heterodimers. These studies identify ICAM-1 and NF-κB as new targets for the development of therapeutic interventions for virus-induced asthma exacerbations.


Nature Medicine | 2008

Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation.

Nathan W. Bartlett; Ross P. Walton; Michael R. Edwards; Juliya Aniscenko; Gaetano Caramori; Jie Zhu; Nicholas Glanville; Katherine J Choy; Patrick Jourdan; Jerome Burnet; Tobias J. Tuthill; Michael S Pedrick; Michael Hurle; Chris Plumpton; Nigel A. Sharp; James N Bussell; Dallas M. Swallow; Jürgen Schwarze; Bruno Guy; Jeffrey Almond; Peter K. Jeffery; Alberto Papi; Richard A. Killington; David J. Rowlands; Edward D. Blair; Neil James Clarke; Sebastian L. Johnston

Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.


American Journal of Respiratory and Critical Care Medicine | 2011

Experimental Rhinovirus Infection as a Human Model of Chronic Obstructive Pulmonary Disease Exacerbation

Patrick Mallia; Simon D. Message; Vera Gielen; Katrina Gray; Tatiana Kebadze; Julia Aniscenko; Vasile Laza-Stanca; Michael R. Edwards; Louise Slater; Alberto Papi; Luminita A. Stanciu; Onn M. Kon; Malcolm Johnson; Sebastian L. Johnston

RATIONALE Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations. OBJECTIVES To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations. METHODS We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes. MEASUREMENTS AND MAIN RESULTS Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and viral load in nasal lavage, sputum, and bronchoalveolar lavage were measured at baseline and after infection with rhinovirus 16. After rhinovirus infection subjects with COPD developed lower respiratory symptoms, airflow obstruction, and systemic and airway inflammation that were greater and more prolonged compared with the control group. Neutrophil markers in sputum related to clinical outcomes and virus load correlated with inflammatory markers. Virus load was higher and IFN production by bronchoalveolar lavage cells was impaired in the subjects with COPD. CONCLUSIONS We have developed a new model of COPD exacerbation that strongly supports a causal relationship between rhinovirus infection and COPD exacerbations. Impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPD exacerbations.


Thorax | 2002

A defective type 1 response to rhinovirus in atopic asthma

Nikolaos G. Papadopoulos; Luminita A. Stanciu; Alberto Papi; Stephen T. Holgate; Sl Johnston

Background: Rhinoviruses (RVs) are the most frequent precipitants of the common cold and asthma exacerbations, but little is known about the immune response to these viruses and its potential implications in the pathogenesis of asthma. Methods: Peripheral blood mononuclear cells (PBMC) from patients with atopic asthma and normal subjects were exposed to live or inactivated RV preparations. Levels of interferon (IFN)γ and interleukins IL-12, IL-10, IL-4, IL-5 and IL-13 were evaluated in the culture supernatants with specific immunoassays. Results: Exposure of PBMC to RVs induced the production of IFNγ, IL-12, IL-10, and IL-13. Cells from asthmatic subjects produced significantly lower levels of IFNγ and IL-12 and higher levels of IL-10 than normal subjects. IL-4 was induced only in the asthmatic group, while the IFNγ/IL-4 ratio was more than three times lower in the asthmatic group. Conclusions: This evidence suggests that the immune response to RVs is not uniquely of a type 1 phenotype, as previously suggested. The type 1 response is defective in atopic asthmatic individuals, with a shift towards a type 2 phenotype in a way similar, but not identical, to their aberrant response to allergens. A defective type 1 immune response to RVs may be implicated in the pathogenesis of virus induced exacerbations of asthma.


Clinical and Experimental Immunology | 2009

T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients

A. Di Stefano; Gaetano Caramori; Isabella Gnemmi; Chiara Vicari; Armando Capelli; Francesca Magno; Silvestro Ennio D'Anna; Andrea Zanini; Paola Brun; Paolo Casolari; K. F. Chung; Peter J. Barnes; Alberto Papi; Ian M. Adcock; Bruno Balbi

There are increased numbers of activated T lymphocytes in the bronchial mucosa of stable chronic obstructive pulmonary disease (COPD) patients. T helper type 17 (Th17) cells release interleukin (IL)‐17 as their effector cytokine under the control of IL‐22 and IL‐23. Furthermore, Th17 numbers are increased in some chronic inflammatory conditions. To investigate the expression of interleukin (IL)‐17A, IL‐17F, IL‐21, IL‐22 and IL‐23 and of retinoic orphan receptor RORC2, a marker of Th17 cells, in bronchial biopsies from patients with stable COPD of different severity compared with age‐matched control subjects. The expression of IL‐17A, IL‐17F, IL‐21, IL‐22, IL‐23 and RORC2 was measured in the bronchial mucosa using immunohistochemistry and/or quantitative polymerase chain reaction. The number of IL‐22+ and IL‐23+ immunoreactive cells is increased in the bronchial epithelium of stable COPD compared with control groups. In addition, the number of IL‐17A+ and IL‐22+ immunoreactive cells is increased in the bronchial submucosa of stable COPD compared with control non‐smokers. In all smokers, with and without disease, and in patients with COPD alone, the number of IL‐22+ cells correlated significantly with the number of both CD4+ and CD8+ cells in the bronchial mucosa. RORC2 mRNA expression in the bronchial mucosa was not significantly different between smokers with normal lung function and COPD. Further, we report that endothelial cells express high levels of IL‐17A and IL‐22. Increased expression of the Th17‐related cytokines IL‐17A, IL‐22 and IL‐23 in COPD patients may reflect their involvement, and that of specific IL‐17‐producing cells, in driving the chronic inflammation seen in COPD.

Collaboration


Dive into the Alberto Papi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo M. Fabbri

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian L. Johnston

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ian M. Adcock

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Barnes

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge