Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Puliafito is active.

Publication


Featured researches published by Alberto Puliafito.


Developmental Cell | 2016

Multicolor Cell Barcoding Technology for Long-Term Surveillance of Epithelial Regeneration in Zebrafish.

Chen Hui Chen; Alberto Puliafito; Ben D. Cox; Luca Primo; Yi Fang; Stefano Di Talia; Kenneth D. Poss

Current fate mapping and imaging platforms are limited in their ability to capture dynamic behaviors of epithelial cells. To deconstruct regenerating adult epithelial tissue at single-cell resolution, we created a multicolor system, skinbow, that barcodes the superficial epithelial cell (SEC) population of zebrafish skin with dozens of distinguishable tags. With image analysis to directly segment and simultaneously track hundreds of SECs in vivo over entire surface lifetimes, we readily quantified the orchestration of cell emergence, growth, repositioning, and loss under homeostatic conditions and after exfoliation or appendage amputation. We employed skinbow-based imaging in conjunction with a live reporter of epithelial stem cell cycle activity and as an instrument to evaluate the effects of reactive oxygen species on SEC behavior during epithelial regeneration. Our findings introduce a platform for large-scale, quantitative in vivo imaging of regenerating skin and reveal unanticipated collective dynamism in epithelial cell size, mobility, and interactions.


The Journal of General Physiology | 2013

Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

Benedetta Cerruti; Alberto Puliafito; Annette M. Shewan; Wei Yu; Alexander N. Combes; Melissa H. Little; Federica Chianale; Luca Primo; Guido Serini; Keith E. Mostov; Antonio Celani; Andrea Antonio Gamba

The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell-cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell-cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis


Journal of Cell Biology | 2014

PDK1-mediated activation of MRCKα regulates directional cell migration and lamellipodia retraction

Paolo Armando Gagliardi; Laura di Blasio; Alberto Puliafito; Giorgio Seano; Roberto Sessa; Federica Chianale; Thomas Leung; Federico Bussolino; Luca Primo

MRCKα is activated by PDK1 through a PIP3-dependent, kinase-independent mechanism that drives the relocation of both proteins to lamellipodia and regulates lamellipodial retraction and directional migration.


Cancers | 2017

Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination

Laura di Blasio; Paolo Armando Gagliardi; Alberto Puliafito; Luca Primo

Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a role for PDK1 in cancer cell invasion and dissemination.


Scientific Reports | 2015

Real-time monitoring of cell protrusion dynamics by impedance responses

Paolo Armando Gagliardi; Alberto Puliafito; Laura di Blasio; Federica Chianale; Desiana Somale; Giorgio Seano; Federico Bussolino; Luca Primo

Cellular protrusions are highly dynamic structures involved in fundamental processes, including cell migration and invasion. For a cell to migrate, its leading edge must form protrusions, and then adhere or retract. The spatial and temporal coordination of protrusions and retraction is yet to be fully understood. The study of protrusion dynamics mainly relies on live-microscopy often coupled to fluorescent labeling. Here we report the use of an alternative, label-free, quantitative and rapid assay to analyze protrusion dynamics in a cell population based on the real-time recording of cell activity by means of electronic sensors. Cells are seeded on a plate covered with electrodes and their shape changes map into measured impedance variations. Upon growth factor stimulation the impedance increases due to protrusive activity and decreases following retraction. Compared to microscopy-based methods, impedance measurements are suitable to high-throughput studies on different cell lines, growth factors and chemical compounds. We present data indicating that this assay lends itself to dissect the biochemical signaling pathways controlling adhesive protrusions. Indeed, we show that the protrusion phase is sustained by actin polymerization, directly driven by growth factor stimulation. Contraction instead mainly relies on myosin action, pointing at a pivotal role of myosin in lamellipodia retraction.


Physical Review Letters | 2006

Dynamical slowdown of polymers in laminar and random flows

Antonio Celani; Alberto Puliafito; Dario Vincenzi

The influence of an external flow on the relaxation dynamics of a single polymer is investigated theoretically and numerically. We show that a pronounced dynamical slowdown occurs in the vicinity of the coil-stretch transition, especially when the dependence on polymer conformation of the drag is accounted for. For the elongational flow, relaxation times are exceedingly larger than the Zimm relaxation time, resulting in the observation of conformation hysteresis. For random smooth flows, hysteresis is not present. Yet, relaxation dynamics is significantly slowed down because of the large variety of accessible polymer configurations. The implications of these results for the modeling of dilute polymer solutions in turbulent flows are addressed.


Seminars in Cancer Biology | 2017

PDK1: At the crossroad of cancer signaling pathways

Paolo Armando Gagliardi; Alberto Puliafito; Luca Primo

Rational target therapy of cancer would benefit from the identification of new targets that can be easily inhibited by small molecules. An increasing amount of evidence hints at 3-phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1) as an intriguing and underexplored target for cancer therapy. Several reports show that PDK1 expression is dysregulated in multiple cancer types. Furthermore PDK1 is implicated in signaling pathways frequently altered in cancer, such as PI3K/Akt, Ras/MAPK and Myc. PDK1 targeting has been proven to be effective in experimental models harboring alterations of these pathways. In this paper we review PDK1 main biochemical mechanisms, its alterations in cancer and interactions with relevant cancer pathways. A potential role of PDK1 in tumor microenvironment is also discussed.


Current Biology | 2016

Live Monitoring of Blastemal Cell Contributions during Appendage Regeneration

Valerie A. Tornini; Alberto Puliafito; Leslie A. Slota; John D. Thompson; Gregory Nachtrab; Anna Lila Kaushik; Marika Kapsimali; Luca Primo; Stefano Di Talia; Kenneth D. Poss

The blastema is a mass of progenitor cells that enables regeneration of amputated salamander limbs or fish fins. Methodology to label and track blastemal cell progeny has been deficient, restricting our understanding of appendage regeneration. Here, we created a system for clonal analysis and quantitative imaging of hundreds of blastemal cells and their respective progeny in living adult zebrafish undergoing fin regeneration. Amputation stimulates resident cells within a limited recruitment zone to reset proximodistal (PD) positional information and assemble the blastema. Within the newly formed blastema, the spatial coordinates of connective tissue progenitors are predictive of their ultimate contributions to regenerated skeletal structures, indicating early development of an approximate PD pre-pattern. Calcineurin regulates size recovery by controlling the average number of progeny divisions without disrupting this pre-pattern. Our longitudinal clonal analyses of regenerating zebrafish fins provide evidence that connective tissue progenitors are rapidly organized into a scalable blueprint of lost structures.


Journal of Cell Science | 2015

PDK1 regulates focal adhesion disassembly by modulating endocytosis of αvβ3 integrin

Laura di Blasio; Paolo Armando Gagliardi; Alberto Puliafito; Roberto Sessa; Giorgio Seano; Federico Bussolino; Luca Primo

ABSTRACT Non-amoeboid cell migration is characterised by dynamic competition among multiple protrusions to establish new adhesion sites at the cells leading edge. However, the mechanisms that regulate the decision to disassemble or to grow nascent adhesions are not fully understood. Here we show that, in endothelial cells, 3-phosphoinositide-dependent protein kinase 1 (PDK1) promotes focal adhesion (FA) turnover by controlling endocytosis of integrin &agr;v&bgr;3 in a PI3K-dependent manner. We demonstrate that PDK1 binds and phosphorylates integrin &agr;v&bgr;3. Downregulation of PDK1 increases FA size and slows down their disassembly. This process requires both PDK1 kinase activity and PI3K activation but does not involve Akt. Moreover, PDK1 silencing stabilises FA in membrane protrusions decreasing migration of endothelial cells on vitronectin. These results indicate that modulation of integrin endocytosis by PDK1 hampers endothelial cell adhesion and migration on extracellular matrix, thus unveiling a novel role for this kinase.


Scientific Reports | 2015

Three-dimensional chemotaxis-driven aggregation of tumor cells

Alberto Puliafito; Alessandro De Simone; Giorgio Seano; Paolo Armando Gagliardi; Laura di Blasio; Federica Chianale; Andrea Antonio Gamba; Luca Primo; Antonio Celani

One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation – mediated by a diffusible attractant – is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells.

Collaboration


Dive into the Alberto Puliafito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Celani

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Sessa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge