Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Salleo is active.

Publication


Featured researches published by Alberto Salleo.


Chemical Reviews | 2010

Materials and Applications for Large Area Electronics: Solution-Based Approaches

Ana Claudia Arias; J. Devin MacKenzie; Iain McCulloch; Jonathan Rivnay; Alberto Salleo

2.3. Medical Devices and Sensors 9 2.4. Radio Frequency Applications 10 3. Materials 12 3.1. Organic Electronics Materials 12 3.2. Semiconducting Polymer Design 13 3.3. Poly(3-alkylthiophenes) 14 3.4. Poly(thieno(3,2-b)thiophenes 15 3.5. Benchmark Polymer Semiconductors 15 3.6. High Performance Polymer Semiconductors 15 4. Device Stability 16 4.1. Bias Stress in Organic Transistors 17 4.1.1. Bias Stress Characterization 17 4.1.2. Bias Stress Mechanism 18 4.2. Short Channel Effects in Organic Transistors 19 5. Materials Patterning and Integration 20 6. Conclusions 22 7. Acknowledgments 22 8. References 22


Nature Materials | 2013

A general relationship between disorder, aggregation and charge transport in conjugated polymers

Rodrigo Noriega; Jonathan Rivnay; Koen Vandewal; Felix P. V. Koch; Natalie Stingelin; Paul Smith; Michael F. Toney; Alberto Salleo

Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials.


Chemical Reviews | 2012

Quantitative determination of organic semiconductor microstructure from the molecular to device scale

Jonathan Rivnay; Stefan C. B. Mannsfeld; Chad E. Miller; Alberto Salleo; Michael F. Toney

The authors would like to thank M. Chabinyc, H. Ade, B. Collins, R. Noriega, K. Vandewal, and D. Duong for fruitful discussions in the preparation of this review. Stanford Synchrotron Radiation Lightsource (SSRL) is a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This publication was partially supported by the Center for Advanced Molecular Photovoltaics (Award No. KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST).


Nature Communications | 2016

High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

Sarah Holliday; Raja Shahid Ashraf; Andrew Wadsworth; Derya Baran; Syeda Amber Yousaf; Christian B. Nielsen; Ching Hong Tan; Stoichko D. Dimitrov; Zhengrong Shang; Nicola Gasparini; Maha A. Alamoudi; Frédéric Laquai; Christoph J. Brabec; Alberto Salleo; James R. Durrant; Iain McCulloch

Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.


Journal of the American Chemical Society | 2010

Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors

Weimin Zhang; Jeremy C. Smith; Scott E. Watkins; Roman Gysel; Michael D. McGehee; Alberto Salleo; James Kirkpatrick; Shahid Ashraf; Thomas D. Anthopoulos; Martin Heeney; Iain McCulloch

High-performance, solution-processed transistors fabricated from semiconducting polymers containing indacenodithiohene repeat units are described. The bridging functions on the backbone contribute to suppressing large-scale crystallization in thin films. However, charge carrier mobilities of up to 1 cm(2)/(V s) for a benzothiadiazole copolymer were reported and, coupled with both ambient stability and long-wavelength absorption, make this family of polymers particularly attractive for application in next-generation organic optoelectronics.


Nature Materials | 2014

Efficient charge generation by relaxed charge-transfer states at organic interfaces

Koen Vandewal; Steve Albrecht; Eric T. Hoke; Kenneth R. Graham; Johannes Widmer; Jessica D. Douglas; Marcel Schubert; William R. Mateker; Jason T. Bloking; George F. Burkhard; Alan Sellinger; Jean M. J. Fréchet; Aram Amassian; Moritz Riede; Michael D. McGehee; Dieter Neher; Alberto Salleo

Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.


Advanced Materials | 2010

Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers

Alberto Salleo; R. Joseph Kline; Dean M. DeLongchamp; Michael L. Chabinyc

The performance of semiconducting polymers has been steadily increasing in the last 20 years. Improved control over the microstructure of these materials and a deeper understanding of how the microstructure affects charge transport are partially responsible for such trend. The development and widespread use of techniques that allow to characterize the microstructure of semiconducting polymers is therefore instrumental for the advance of these materials. This article is a review of the characterization techniques that provide information used to enhance the understanding of structure/property relationships in semiconducting polymers. In particular, the applications of optical and X-ray spectroscopy, X-ray diffraction, and scanning probe techniques in this context are described.


Applied Physics Letters | 2002

Polymer thin-film transistors with chemically modified dielectric interfaces

Alberto Salleo; Michael L. Chabinyc; M. S. Yang; R. A. Street

The characteristics of polymeric thin-film transistors can be controlled by chemically modifying the surface of the gate dielectric prior to the deposition of the organic semiconductor. The chemical treatment consists of derivatizing the silicon oxide surface with organic trichlorosilanes to form self-assembled monolayers (SAMs). The deposition of an octadecyltrichlorosilane SAM leads to a mobility of 0.01–0.02 cm2/V s in a polyfluorene copolymer, a 20-fold improvement over the mobility on bare silicon oxide. The mobility enhancement mechanism is likely to involve molecular interactions between the polymer and the SAM.


Nature Materials | 2009

Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films

Jonathan Rivnay; Leslie H. Jimison; John E. Northrup; Michael F. Toney; Rodrigo Noriega; Shaofeng Lu; Tobin J. Marks; Antonio Facchetti; Alberto Salleo

Solution-processable organic semiconductors are central to developing viable printed electronics, and performance comparable to that of amorphous silicon has been reported for films grown from soluble semiconductors. However, the seemingly desirable formation of large crystalline domains introduces grain boundaries, resulting in substantial device-to-device performance variations. Indeed, for films where the grain-boundary structure is random, a few unfavourable grain boundaries may dominate device performance. Here we isolate the effects of molecular-level structure at grain boundaries by engineering the microstructure of the high-performance n-type perylenediimide semiconductor PDI8-CN2 and analyse their consequences for charge transport. A combination of advanced X-ray scattering, first-principles computation and transistor characterization applied to PDI8-CN2 films reveals that grain-boundary orientation modulates carrier mobility by approximately two orders of magnitude. For PDI8-CN2 we show that the molecular packing motif (that is, herringbone versus slip-stacked) plays a decisive part in grain-boundary-induced transport anisotropy. The results of this study provide important guidelines for designing device-optimized molecular semiconductors.


Nature Materials | 2017

Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

Derya Baran; Raja Shahid Ashraf; David Hanifi; Maged Abdelsamie; Nicola Gasparini; Jason A. Röhr; Sarah Holliday; Andrew Wadsworth; Sarah Lockett; Marios Neophytou; Christopher J.M. Emmott; Jenny Nelson; Christoph J. Brabec; Aram Amassian; Alberto Salleo; Thomas Kirchartz; James R. Durrant; Iain McCulloch

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

Collaboration


Dive into the Alberto Salleo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Toney

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge