Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Sánchez-Guijo is active.

Publication


Featured researches published by Alberto Sánchez-Guijo.


Journal of Lipid Research | 2015

Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS

Alberto Sánchez-Guijo; Vinzenz Oji; Michaela F. Hartmann; Heiko Traupe; Stefan A. Wudy

Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate.

Jens Neunzig; Alberto Sánchez-Guijo; A. Mosa; Michaela F. Hartmann; Joachim Geyer; Stefan A. Wudy; Rita Bernhardt

In many tissues sulfonated steroids exceed the concentration of free steroids and recently they were also shown to fulfill important physiological functions. While it was previously demonstrated that cholesterol sulfate (CS) is converted by CYP11A1 to pregnenolone sulfate (PregS), further conversion of PregS has not been studied in detail. To investigate whether a steroidogenic pathway for sulfonated steroids exists similar to the one described for free steroids, we examined the interaction of PregS with CYP17A1 in a reconstituted in-vitro system. Difference spectroscopy revealed a Kd-value of 74.8±4.2μM for the CYP17A1-PregS complex, which is 2.5-fold higher compared to the CYP17A1-pregnenolone (Preg) complex. Mass spectrometry experiments proved for the first time that PregS is hydroxylated by CYP17A1 at position C17, identically to pregnenolone. A higher Km- and a lower kcat-value for CYP17A1 using PregS compared with Preg were observed, indicating a 40% reduced catalytic efficiency when using the sulfonated steroid. Furthermore, we analyzed whether the presence of cytochrome b5 (b5) has an influence on the CYP17A1 dependent conversion of PregS, as was demonstrated for Preg. Interestingly, with 17OH-PregS no scission of the 17,20-carbon-carbon bond occurs, when b5 is added to the reconstituted in-vitro system, while b5 promotes the formation of DHEA from 17OH-Preg. When using human SOAT-HEK293 cells expressing CYP17A1 and CPR, we could confirm that PregS is metabolized to 17OH-PregS, strengthening the potential physiological meaning of a pathway for sulfonated steroids.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Transport of the placental estriol precursor 16α-hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) by stably transfected OAT4-, SOAT-, and NTCP-HEK293 cells.

H. Schweigmann; Alberto Sánchez-Guijo; Bernhard Ugele; Katja Hartmann; Michaela F. Hartmann; Martin Bergmann; C. Pfarrer; Barbara Döring; Stefan A. Wudy; Ernst Petzinger; Joachim Geyer; Gary Grosser

16α-Hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) mainly originates from the fetus and serves as precursor for placental estriol biosynthesis. For conversion of 16α-OH-DHEAS to estriol several intracellular enzymes are required. However, prior to enzymatic conversion, 16α-OH-DHEAS must enter the cells by carrier mediated transport. To identify these carriers, uptake of 16α-OH-DHEAS by the candidate carriers organic anion transporter OAT4, sodium-dependent organic anion transporter SOAT, Na(+)-taurocholate cotransporting polypeptide NTCP, and organic anion transporting polypeptide OATP2B1 was measured in stably transfected HEK293 cells by LC-MS-MS. Furthermore, the study aimed to localize SOAT in the human placenta. Stably transfected OAT4-HEK293 cells revealed a partly sodium-dependent transport for 16α-OH-DHEAS with an apparent Km of 23.1 ± 5.1 μM and Vmax of 485.0 ± 39.1 pmol/mg protein/min, while stably transfected SOAT- and NTCP-HEK293 cells showed uptake only under sodium conditions with Km of 319.0 ± 59.5 μM and Vmax of 1465.8 ± 118.8 pmol/mg protein/min for SOAT and Km of 51.4 ± 9.9 μM and Vmax of 1423.3 ± 109.6 pmol/mg protein/min for NTCP. In contrast, stably transfected OATP2B1-HEK293 cells did not transport 16α-OH-DHEAS at all. Immunohistochemical studies and in situ hybridization of formalin fixed and paraffin embedded sections of human late term placenta showed expression of SOAT in syncytiotrophoblasts, predominantly at the apical membrane as well as in the vessel endothelium. In conclusion, OAT4, SOAT, and NTCP were identified as carriers for the estriol precursor 16α-OH-DHEAS. At least SOAT and OAT4 seem to play a functional role for the placental estriol synthesis as both are expressed in the syncytiotrophoblast of human placenta.


Journal of Lipid Research | 2015

High levels of oxysterol sulfates in serum of patients with steroid sulfatase deficiency

Alberto Sánchez-Guijo; Vinzenz Oji; Michaela F. Hartmann; Hans-Christian Schuppe; Heiko Traupe; Stefan A. Wudy

Steroid sulfatase (STS) deficiency is the underlying cause of the skin condition known as recessive X-linked ichthyosis (RXLI). RXLI patients show scales on their skin caused by high concentrations of cholesterol sulfate (CS), as they are not capable of releasing the sulfate group from its structure to obtain free cholesterol. CS has been reported, so far, as the sole sulfated steroid with increased concentrations in the blood of RXLI patients. A non-targeted LC-MS approach in negative mode detection (LC-MS precursor ion scan mode) was applied to serum samples of 12 RXLI patients and 19 healthy males. We found that CS was not the only sulfated compound consistently elevated in RXLI patients, because a group of compounds with a m/z of 481 was found in high concentrations too. Further LC-MS/MS demonstrated that the main contributor to the m/z 481 signal in RXLI serum is 27-hydroxycholesterol-3-sulfate (27OHC3S). Accordingly, a new method for 27OHC3S quantification in the context of RXLI has been developed and validated. Other hydroxycholesterol sulfate compounds were elevated as well in RXLI patients.


Molecular and Cellular Endocrinology | 2016

Role of steroid sulfatase in steroid homeostasis and characterization of the sulfated steroid pathway: Evidence from steroid sulfatase deficiency

Alberto Sánchez-Guijo; Jens Neunzig; Adrian Gerber; Vinzenz Oji; Michaela F. Hartmann; Hans-Christian Schuppe; Heiko Traupe; Rita Bernhardt; Stefan A. Wudy

The impact of steroid sulfatase (STS) activity in the circulating levels of both sulfated and unconjugated steroids is only partially known. In addition, the sulfated steroid pathway, a parallel pathway to the one for unconjugated steroids, which uses the same enzymes, has never been characterized in detail before. Patients with steroid sulfatase deficiency (STSD) are unable to enzymatically convert sulfated steroids into their unconjugated forms, and are a good model to elucidate how STS affects steroid biosynthesis and to study the metabolism of sulfated steroids. We quantified unconjugated and sulfated steroids in STSD serum, and compared these results with data obtained from serum of healthy controls. Most sulfated steroids were increased in STSD. However, androstenediol-3-sulfate and epiandrosterone sulfate showed similar levels in both groups, and the concentrations of androsterone sulfate were notably lower. Hydroxylated forms of DHEAS and of pregnenolone sulfate were found to be increased in STSD, suggesting a mechanism to improve the excretion of sulfated steroids. STSD testosterone concentrations were normal, but cholesterol and DHEA were significantly decreased. Additionally, serum bile acids were three-fold higher in STSD. Correlations between concentrations of steroids in each group indicate that 17α-hydroxy-pregnenolone-3-sulfate in men is mainly biosynthesized from the precursor pregnenolone sulfate and androstenediol-3-sulfate from DHEAS. These findings confirm the coexistence of two steroidogenic pathways: one for unconjugated steroids and another one for sulfated steroids. Each pathway is responsible for the synthesis of specific steroids. The equal levels of testosterone, and the reduced level of unconjugated precursors in STSD, support that testosterone is primarily synthesized from sulfated steroids. In consequence, testosterone synthesis in STSD relies on an enzyme with sulfatase activity other than STS. This study reveals that STS is a key player of steroid biosynthesis regulating the availability of circulating cholesterol.


Journal of Bone and Mineral Research | 2015

Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment.

Lijie Shi; Alberto Sánchez-Guijo; Michaela F. Hartmann; Eckhard Schönau; Jonas Esche; Stefan A. Wudy; Thomas Remer

Whether higher production of glucocorticoids (GCs) within the physiological range may already be affecting bone status in healthy children is unknown. Because dietary protein intake affects both bone and GCs, we examined the association of urinary measures of glucocorticoid status and cortical bone in healthy non‐obese children, after particularly controlling for protein intake. Proximal forearm bone parameters were measured by peripheral quantitative computed tomography (pQCT). Subjects studied (n = 175, 87 males, aged 6 to 18 years) had two 24‐hour urine samples collected: the first sample at 1 year before bone measurement, and the second sample at the time of bone measurement. Major urinary GC metabolites were measured by mass spectrometry and summed to assess daily adrenal GC secretion (∑C21). Urinary free cortisol (UFF) and cortisone (UFE) were summed to assess potentially bioactive free GCs (UFF + UFE). After controlling for several covariates and especially urinary nitrogen (the biomarker of protein intake) cortisol secretion ∑C21 was inversely associated with all analyzed pQCT measures of bone quality. ∑C21 also predicted a higher endosteal and lower periosteal circumference, explaining both a smaller cortical area and (together with lower BMD) a lower strength‐strain‐index (SSI). UFF + UFE, UFE itself, and a urinary metabolite‐estimate of 11beta‐hydroxysteroid dehydrogenase type1 (11beta‐HSD1) activity showed corresponding reciprocal associations (p < 0.05) with BMD and bone mineral content, but not with SSI and bone geometry variables. In conclusion, higher GC levels, even within the physiological range, appear to exert negative influences on bone modeling and remodeling already during growth. Our physiological data also suggest a relevant role of cortisone as the direct source for intracrine‐generated cortisol by bone cell 11beta‐HSD1.


Reproduction | 2014

Free and sulfated steroids secretion in postpubertal boars (Sus scrofa domestica)

Gerhard Schuler; Yaser Dezhkam; Linda Bingsohn; Bernd Hoffmann; Klaus Failing; Christina E. Galuska; Michaela F. Hartmann; Alberto Sánchez-Guijo; Stefan A. Wudy

Sulfated steroids have been traditionally regarded as inactive metabolites. However, they may also serve as precursors for the production of active free steroids in target cells. In this study, we used the boar as a model to study the metabolism, transport, and function of steroid sulfates due to their high production in the porcine testicular-epididymal compartment, of which the role is unknown. To characterize the secretion of free and sulfated steroids, plasma samples were collected from six postpubertal boars over 6  h every 20  min from the jugular vein. Long-term secretion profiles were also established in seven boars stimulated with human chorionic gonadotropin. To directly characterize the testicular output, samples were collected from superficial testicular arterial and venous blood vessels. Testosterone, androstenedione and sulfated pregnenolone, DHEA, estrone (E1), and estradiol-17β (E2) were determined by liquid chromatography-tandem mass spectrometry. Free E1 and E2 were measured by RIA. Irrespective of a high variability between individuals, the results suggest that i) all steroids assessed are primarily produced in the testis, ii) they exhibit similar profiles pointing to a pulsatile secretion with low frequency (three to five pulses per day), and iii) after synthesis at least a major proportion is immediately released into peripheral circulation. The fact that all steroid sulfates assessed are original testicular products and their high correlations with one another suggest their role as being intermediates of testicular steroidogenesis rather than as being inactivated end products. Moreover, a substantial use of sulfated steroids in porcine testicular steroidogenesis would assign a crucial regulatory role to steroid sulfatase, which is highly expressed in Leydig cells.


Methods of Molecular Biology | 2013

Introduction to Gas Chromatography-Mass Spectrometry

Alberto Sánchez-Guijo; Michaela F. Hartmann; Stefan A. Wudy

Gas chromatography-mass spectrometry (GC-MS) is a technique of pivotal importance for the analysis of hormones in biological fluids. In consequence, it has gained relevance in clinical and endocrinological laboratories, providing reference analytical methods. This chapter offers a general description of its principles, and a real example for GC-MS profiling of plasma steroids.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

The steroid metabolite 16(β)-OH-androstenedione generated by CYP21A2 serves as a substrate for CYP19A1

Jens Neunzig; M. Milhim; Lina Schiffer; Yogan Khatri; Josef Zapp; Alberto Sánchez-Guijo; Michaela F. Hartmann; Stefan A. Wudy; Rita Bernhardt

The 21-hydroxylase (CYP21A2) is a steroidogenic enzyme crucial for the synthesis of mineralo- and glucocorticoids. It is described to convert progesterone as well as 17-OH-progesterone, through a hydroxylation at position C21, into 11-deoxycorticosterone (DOC) and 11-deoxycortisol (RSS), respectively. In this study we unraveled CYP21A2 to have a broader steroid substrate spectrum than assumed. Utilizing a reconstituted in vitro system, consisting of purified human CYP21A2 and human cytochrome P450 reductase (CPR) we demonstrated that CYP21A2 is capable to metabolize DOC, RSS, androstenedione (A4) and testosterone (T). In addition, the conversion of A4 rendered a product whose structure was elucidated through NMR spectroscopy, showing a hydroxylation at position C16-beta. The androgenic properties of this steroid metabolite, 16(β)-OH-androstenedione (16bOHA4), were investigated and compared with A4. Both steroid metabolites were shown to be weak agonists for the human androgen receptor. Moreover, the interaction of 16bOHA4 with the aromatase (CYP19A1) was compared to that of A4, indicating that the C16 hydroxyl group does not influence the binding with CYP19A1. In contrast, the elucidation of the kinetic parameters showed an increased Km and decreased kcat value resulting in a 2-fold decreased catalytic efficiency compared to A4. These findings were in accordance with our docking studies, revealing a similar binding conformation and distance to the heme iron of both steroids. Furthermore, the product of 16bOHA4, presumably 16-hydroxy-estrone (16bOHE1), was investigated with regard to its estrogenic activity, which was negligible compared to estradiol and estrone. Finally, 16bOHA4 was found to be present in a patient with 11-hydroxylase deficiency and in a patient with an endocrine tumor. Taken together, this study provides novel information on the steroid hormone biosynthesis and presents a new method to detect further potential relevant novel steroid metabolites.


The Journal of Steroid Biochemistry and Molecular Biology | 2016

Profiling of bile acids in bovine follicular fluid by fused-core-LC–MS/MS

Alberto Sánchez-Guijo; C. Blaschka; Michaela F. Hartmann; C. Wrenzycki; Stefan A. Wudy

Bile acids (BAs) are present in follicular fluid (FF) from humans and cattle. This fact has triggered an interest on the role BAs might play in folliculogenesis and their possible association with fertility. To achieve a better understanding about this subject, new methods are needed to provide reliable information about concentrations of the most important BAs in FF. In this context, liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers high specificity with a relatively simple sample workup. We developed and validated a new assay for the quick profiling of the 9 most abundant BAs in follicular fluid from cattle. The method uses 200μl of FF and can quantify cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and their glycine (G) and taurine (T) conjugates. Lithocholic acid (LCA), its conjugates GLCA and TLCA, and sulfated forms, were present in some samples, but their concentration was low compared to other BAs (in average, below 60ng/ml for LCA, GLCA or TLCA and below 20ng/ml for their corresponding sulfates). Method performance was studied at three quality controls for each compound in consonance with their physiological concentration. Excellent linearity and recovery were found for all compounds at every control level. Intra-day and between-day precisions (%CV) and accuracies (relative errors) were below 15% for all the compounds. Matrix effects were negligible for most of the analytes. Samples undergoing freeze-thaw showed no degradation of their BAs. The method makes use of a fused-core phenyl column coupled to a triple quadrupole tandem mass spectrometer to achieve chromatographic separation within 5min. We quantified BAs grouped in four different follicle sizes (3-5mm, 6-8mm, 9-14mm, >15mm), obtaining a similar relative BA profile for all the sizes, with CA always in higher concentration, ranging between 1600 and 18000ng/ml, approximately, followed by its conjugate glycocholic acid, GCA, which ranged between 800 and 9000ng/ml. The highest concentration in CA, DCA or CDCA was always detected in FF stemming from follicles of 6-8mm. To our knowledge, this is the first report in which BAs subspecies have been detected and quantified in bovine follicular fluid.

Collaboration


Dive into the Alberto Sánchez-Guijo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinzenz Oji

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge