Alberto Talamo
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Talamo.
Annals of Nuclear Energy | 2004
Alberto Talamo; Waclaw Gudowski; Francesco Venneri
In the future development of nuclear energy, the graphite-moderated helium-cooled reactors may play an important role because of their valuable technical advantages: passive safety, low cost, flexi ...
Nuclear Science and Engineering | 2007
Alberto Talamo
Abstract In the present studies we performed the analytical calculation of the average Dancoff factor for prismatic high-temperature reactors; in this type of core, the fuel elements consist of small fuel grains (TRISO particles) randomly dispersed in a moderator (graphite) matrix and confined to a cylindrical volume (fuel pin). By definition, the Dancoff factor is the probability that a neutron leaving a fuel kernel hits uncollided another fuel kernel in the same fuel pin, which represents the intrapin contribution, or in another pin, which represents the interpin contribution. Similar studies have already been performed for pebble bed high-temperature reactors, where spheres (fuel pebbles) play the role of the cylinders; consequently, we retained the physical model describing an infinite lattice of unit cells, each containing a pair of concentric spheres, where the inner sphere is filled with a mixture of fuel grains and moderator and the outer one is filled with pure moderator, and we derived the mathematical model for the case of concentric cylinders. The physical model is grounded on the chord theory and the concept of a pseudo cross section; the latter takes into account, when the medium consists of moderator and small fuel grains, the probability, per unit path length, that a neutron either collides with a moderator nucleus or hits a fuel surface. The above method possesses a general validity, and it is suitable for the treatment of spheres (fuel pebbles), cylinders (fuel pins), or cuboids (fuel prisms) filled by moderator and small fuel grains. The predictions of the analytical method well match the results of the MCNP code; nevertheless, since in the case of prismatic cores the mathematical model involves the calculation of complicated double integrals, the CPU time required by the two different methods becomes comparable.
Journal of Nuclear Science and Technology | 2004
Alberto Talamo; Waclaw Gudowski; Jerzy Cetnar
We performed a numerical comparative analysis of the burnup capability of the Gas Turbine-Modular Helium Reactor (GT-MHR) by the Monte Carlo Continuous Energy Burnup Code (MCB). The MCB code is an extension of MCNP that includes the burnup implementation; it adopts continuous energy cross sections and it evaluates the transmutation trajectories for over 2,400 decaying nuclides. We equipped the MCB code with three different nuclear data libraries: JENDL-3.2, JEF-2.2 and ENDF/B-6.8 processed for temperatures from 300 to 1,800K. The GT-MHR model studied in this paper is fueled by actinides coming from the Light Water Reactors waste, converted into two different types of fuel: Driver Fuel and Transmutation Fuel. The Driver Fuel supplies the fissile nuclides needed to maintain the criticality of the reactor, whereas the Transmutation Fuel depletes non-fissile isotopes and controls reactivity excess. We set the refueling and shuffling period to one year and the in-core fuel residency time to three years. The comparative analysis of the MCB code consists of accuracy and precision studies. In the accuracy studies, we performed the burnup calculation with different nuclear data libraries during the year at which the refueling and shuffling schedule set the equilibrium of the fuel composition. In the precision studies, we repeated the same simulations 20 times with a different pseudorandom number stride and the same nuclear data library.
Journal of Nuclear Science and Technology | 2006
Alberto Talamo
The capability to operate on LWRs waste constitutes one of the major benefits of the Gas Turbine-Modular Helium Reactor; in this paper, it has been evaluated the possibility to incinerate the LWRs waste and to simultaneously breed fissile 233U by fertile thorium. Since a mixture of pure 239Pu-thorium has shown a quite poor neutron economy, the LWRs waste-thorium fuel performance has been also tested when plutonium and thorium are allocated in different TRISO particles. More precisely, when fissile and fertile actinides share the same TRISO kernel, the resonance at 0.29 eV of the fission and capture microscopic cross sections of 239Pu diminishes also the absorption rate of fertile 232Th and thus it degrades the breeding process. Consequently, in the present studies, two different types of fuel have been utilized: the Driver Fuel, made of LWRs waste, and the Transmutation Fuel, made of fertile thorium. Since, in the thermal neutron energy range, the microscopic capture cross section of 232Th is about 80-100 times smaller than the fission one of 239Pu, setting thorium in particles with a large kernel and LWRs waste in particles with a small one makes the volume integrated reaction rates better equilibrated. At the light of the above consideration, which drives to load as much thorium as possible, for the Transmutation Fuel they have been selected the JAERI TRISO particles packed 40%; whereas, for the Driver Fuel they have been tested different packing fractions and kernel radii. Since no configuration allowed the reactor to work, the above procedure has been repeated when fertile particles are packed 20%; the latter choice permits over one year of operation, but the build up of 233U represents only a small fraction of the depleted 239Pu. Finally, the previous configuration has been also investigated when the fertile and fissile fuels share the same kernel or when the fertile fuel axially alternates with the fissile one.
Nuclear Science and Engineering | 2006
Alberto Talamo; Waclaw Gudowski
Abstract In the future development of nuclear energy, the graphite-moderated helium-cooled reactors may play an important role because of their valuable technical advantages: passive safety, low cost, flexibility in the choice of fuel, high conversion energy efficiency, high burnup, more resistant fuel cladding, and low power density. General Atomics possesses a long experience with this type of reactor, and it has recently developed the gas turbine-modular helium reactor (GT-MHR), a design where the nuclear power plant is structured into four reactor modules of 600 MW(thermal). Amid its benefits, the GT-MHR offers a rather large flexibility in the choice of fuel type; Th, U, and Pu may be used in the manufacture of fuel with some degrees of freedom. As a consequence, the fuel management may be designed for different objectives aside from energy production, e.g., the reduction of actinide waste production through a fuel based on thorium. In our previous studies we analyzed the behavior of the GT-MHR with a plutonium fuel based on light water reactor (LWR) waste; in the present study we focused on the incineration of military Pu. This choice of fuel requires a detailed numerical modeling of the reactor since a high value of keff at the beginning of the reactor operation requires the modeling both of control rods and of burnable poison; by contrast, when the GT-MHR is fueled with LWR waste, at the equilibrium of the fuel composition, the reactivity swing is small.
Nuclear Science and Engineering | 2007
Alberto Talamo; Waclaw Gudowski
Abstract In the present study we investigate the influence of the fuel axial shuffling and the operational control rod maneuvering on the performances of the one-pass (no reprocessing) deep-burn incineration of light water reactor waste in the gas turbine-modular helium reactor. After an irradiation period, the fuel axial shuffling schedule has to take into account the fuel depletion profile generated by the adjustments of the position of the operational control rods, because the insertion of the rods strongly alters the neutron flux shape. We aimed at implementing a numerical simulation as close as possible to a real scenario and therefore took advantage of the powerful geometrical modeling capability of the MCB code to describe the reactor in a detailed three-dimensional geometry model in which we simulated over 120 different burnable materials, each of them undergoing a different neutron flux intensity. We adjusted the position of the control rods every 90 effective full-power days of irradiation to maintain the core as close as possible to the critical condition; thereafter, we recalculated the neutron flux and cross sections by a new MCNP/MCB run. At the present time, this sophisticated approach can be realized only by a computer cluster of ten 64-bit processors working in parallel mode. The fuel axial shuffling adds from 3 to 5% to the transmutation rates of 239Pu, plutonium, and all actinides, which range from 80 to 86, 50 to 53, and 46 to 48%, respectively; the present results are 5 to 14% less compared to the case of a two-pass (reprocessing) deep burn. The efficiency of transmuting minor actinides has been estimated by comparing the long-term radio-toxicity of the fresh and irradiated americium and curium fuel; this comparison revealed that it is not worthwhile to transmute americium and curium in the current design of the gas turbine-modular helium reactor by a one-pass deep burn.
Journal of Nuclear Science and Technology | 2005
Alberto Talamo; Waclaw Gudowski
One of the major benefits of the Gas Turbine-Modular Helium Reactor is the capability to operate with several different types of fuel; either Light Water Reactors waste, military plutonium or thorium represent valid candidates as possible types of fuel. In the present studies, we performed a comparison of various nuclear data libraries by the Monte Carlo Continuous Energy Burnup Code MCB applied to the Gas Turbine-Modular Helium Reactor operating on a thorium fuel. A thorium fuel offers valuable attractive advantages: low fuel cost, high reduction of actinides production and the possibility to enable the reactor to act as a breeder of fuel by the neutron capture of fertile 232Th. We evaluated the possibility to mix thorium with small quantities, about 3% in atomic composition, of 239Pu, 233U and 235U. The mass of thorium must be much larger than that one of plutonium or uranium because of the low capture cross section of thorium compared to the fission one of the fissile nuclides; at the same time, the quantity of the fissile isotopes must grant the criticality condition. These two simultaneous constraints force to load a huge mass of fuel in the reactor; consequently, we propose to allocate the fuel in TRISO particles with a large radius of the kernel. For each of the three different fuels we calculated the evolution of the fuel composition by the MCB code equipped with five different nuclear data libraries: JENDL-3.3, JENDL-3.2, JEFF-3, JEF-2.2 and ENDF/B.
Nuclear Technology | 2013
Alberto Talamo; Yousry Gohar; H. Kiyavitskaya; V. Bournos; Y. Fokov; C. Routkovskaya
Abstract This study compares Monte Carlo and deterministic neutronics analyses of the zero-power YALINA Thermal subcritical assembly, which is located in Minsk, Belarus. The YALINA Thermal facility consists of a subcritical core that can be driven by either a californium neutron source or a deuterium-deuterium (D-D) neutron source. The californium neutron source is generated by the natural decay of 252Cf; the D-D neutron source is generated by a deuteron accelerator. The MCNPX, MONK, NJOY, DRAGON, PARTISN, and TORT computer programs have been used for calculating the neutron spectrum, the neutron flux, and the 3He(n,p) reaction rate set by californium and D-D neutron sources. These parameters have been computed in different experimental channels of the assembly for different fuel loading configurations. The MCNPX and MONK computer programs modeled the facility without any major approximation; the PARTISN and TORT computer simulations used 69 energy groups, S16 angular quadrature set, linear anisotropic scattering, and approximately 60 homogenized material zones. The results calculated by different computer programs are in good agreement; in addition, they match the 3He(n,p) reaction rate from experimental measurements obtained by californium and D-D neutron sources.
Annals of Nuclear Energy | 2004
Alberto Talamo; Waclaw Gudowski; Jerzy Cetnar; Francesco Venneri
Annals of Nuclear Energy | 2006
Alberto Talamo; Wei Ji; Jerzy Cetnar; Waclaw Gudowski