Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Tejedor is active.

Publication


Featured researches published by Alberto Tejedor.


Journal of Immunology | 2005

The Chemokine Receptor CCR7 Activates in Dendritic Cells Two Signaling Modules That Independently Regulate Chemotaxis and Migratory Speed

Lorena Riol-Blanco; Noelia Sánchez-Sánchez; Ana Torres; Alberto Tejedor; Shuh Narumiya; Angel L. Corbí; Paloma Sánchez-Mateos; José Luis Rodríguez-Fernández

CCR7 is necessary to direct dendritic cells (DCs) to secondary lymphoid nodes and to elicit an adaptative immune response. Despite its importance, little is known about the molecular mechanisms used by CCR7 to direct DCs to lymph nodes. In addition to chemotaxis, CCR7 regulates the migratory speed of DCs. We investigated the intracellular pathways that regulate CCR7-dependent chemotaxis and migratory speed. We found that CCR7 induced a Gi-dependent activation of MAPK members ERK1/2, JNK, and p38, with ERK1/2 and p38 controlling JNK. MAPK members regulated chemotaxis, but not the migratory speed, of DCs. CCR7 induced activation of PI3K/Akt; however, these enzymes did not regulate either chemotaxis or the speed of DCs. CCR7 also induced activation of the GTPase Rho, the tyrosine kinase Pyk2, and inactivation of cofilin. Pyk2 activation was independent of Gi and Src and was dependent on Rho. Interference with Rho or Pyk2 inhibited cofilin inactivation and the migratory speed of DCs, but did not affect chemotaxis. Interference with Rho/Pyk2/cofilin inhibited DC migratory speed even in the absence of chemokines, suggesting that this module controls the speed of DCs and that CCR7, by activating its components, induces an increase in migratory speed. Therefore, CCR7 activates two independent signaling modules, one involving Gi and a hierarchy of MAPK family members and another involving Rho/Pyk2/cofilin, which control, respectively, chemotaxis and the migratory speed of DCs. The use of independent signaling modules to control chemotaxis and speed can contribute to regulate the chemotactic effects of CCR7.


European Respiratory Journal | 2009

Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients

Luis Puente-Maestu; J. Pérez-Parra; R. Godoy; N. Moreno; Alberto Tejedor; Federico González-Aragoneses; J-L. Bravo; F. Villar Álvarez; Sonia Camaño; Alvar Agusti

Several cellular and molecular alterations have been described in skeletal and respiratory muscles of patients with chronic obstructive pulmonary disease (COPD), but information on potential abnormalities of mitochondrial function is scarce. The aim of the present study was to investigate mitochondrial function in the vastus lateralis (VL) and external intercostalis (EI) of COPD patients. Biopsies from VL and EI were obtained during surgery for lung cancer in 13 patients with mild to moderate COPD (age 68±6 yrs, forced expiratory volume in one second (FEV1) 66±15% predicted) and 19 control subjects (age 67±9 yrs, FEV1 95±18% pred). State 3 and 4 mitochondrial oxygen consumption (V′O2,m), ATP synthesis, citrate synthase, cytochrome oxidase (COX) and complex I–III activities, as well as reactive oxygen species (ROS) production, were determined. In COPD patients, in both muscles, COX activity (VL: COPD 3.0±0.8 versus control 2.0±0.8; EI: 3.7±1.6 versus 2.4±0.9 μmol·min−1·mg−1) and ROS production (VL: 1,643±290 versus 1,285±468; EI: 1,033±210 versus 848±288 arbitrary units) were increased, whereas state 3 V′O2,m was reduced (VL: 2.9±0.3 versus 3.6±0.4; EI: 3.6±0.3 versus 4.1±0.4 mmol·min−1·kg−1). Skeletal muscle mitochondria of patients with chronic obstructive pulmonary disease show electron transport chain blockade and excessive production of reactive oxygen species. The concurrent involvement of both vastus lateralis and external intercostalis suggests a systemic (rather than a local) mechanism(s) already occurring in relatively early stages (Global Initiative for Chronic Obstructive Lung Disease stage II) of the disease.


Analytical Chemistry | 2011

Elemental Bioimaging in Kidney by LA–ICP–MS As a Tool to Study Nephrotoxicity and Renal Protective Strategies in Cisplatin Therapies

Estefanía Moreno-Gordaliza; Charlotte Giesen; Alberto Lázaro; Diego Esteban-Fernández; Blanca Humanes; Benito Cañas; Ulrich Panne; Alberto Tejedor; Norbert Jakubowski; M. Milagros Gómez-Gómez

A laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)-based methodology is presented for Pt, Cu, and Zn bioimaging on whole kidney 3 μm sagittal sections from rats treated with pharmacological doses of cisplatin, which were sacrificed once renal damage had taken place. Pt turned out to accumulate in the kidney cortex and corticomedullary junction, corresponding to areas where the proximal tubule S3 segments (the most sensitive cells to cisplatin nephrotoxicity) are located. This demonstrates the connection between platinum accumulation and renal damage proved by histological examination of HE-stained sections and evaluation of serum and urine biochemical parameters. Cu and Zn distribution maps revealed a significant displacement in cells by Pt, as compared to control tissues. A dramatic decrease in the Pt accumulation in the cortex was observed when cilastatin was coadministered with cisplatin, which can be related to its nephroprotective effect. Excellent imaging reproducibility, sensitivity (LOD 50 fg), and resolution (down to 8 μm) were achieved, demonstrating that LA-ICP-MS can be applied as a microscopic metal detector at cellular level in certain tissues. A simple and quick approach for the estimation of Pt tissue levels was proposed, based on tissue spiking.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

HIF-1α and PFKFB3 Mediate a Tight Relationship Between Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic Macrophages

Ahmed Tawakol; Parmanand Singh; Marina Mojena; María Pimentel-Santillana; Hamed Emami; Megan H. MacNabb; James H.F. Rudd; Jagat Narula; José Antonio Enríquez; Paqui G. Través; María Fernández-Velasco; Ramon Bartrons; Zahi A. Fayad; Alberto Tejedor; Lisardo Boscá

Objective—Although it is accepted that macrophage glycolysis is upregulated under hypoxic conditions, it is not known whether this is linked to a similar increase in macrophage proinflammatory activation and whether specific energy demands regulate cell viability in the atheromatous plaque. Approach and Results—We studied the interplay between macrophage energy metabolism, polarization, and viability in the context of atherosclerosis. Cultured human and murine macrophages and an in vivo murine model of atherosclerosis were used to evaluate the mechanisms underlying metabolic and inflammatory activity of macrophages in the different atherosclerotic conditions analyzed. We observed that macrophage energetics and inflammatory activation are closely and linearly related, resulting in dynamic calibration of glycolysis to keep pace with inflammatory activity. In addition, we show that macrophage glycolysis and proinflammatory activation mainly depend on hypoxia-inducible factor and on its impact on glucose uptake, and on the expression of hexokinase II and ubiquitous 6-phosphofructo-2-kinase. As a consequence, hypoxia potentiates inflammation and glycolysis mainly via these pathways. Moreover, when macrophages’ ability to increase glycolysis through 6-phosphofructo-2-kinase is experimentally attenuated, cell viability is reduced if subjected to proinflammatory or hypoxic conditions, but unaffected under control conditions. In addition to this, granulocyte-macrophage colony-stimulating factor enhances anerobic glycolysis while exerting a mild proinflammatory activation. Conclusions—These findings, in human and murine cells and in an animal model, show that hypoxia potentiates macrophage glycolytic flux in concert with a proportional upregulation of proinflammatory activity, in a manner that is dependent on both hypoxia-inducible factor -1&agr; and 6-phosphofructo-2-kinase.


Life Sciences | 2000

Role of vascular endothelial growth factor (VEGF) in endothelial cell protection against cytotoxic agents.

M. Angeles Castilla; Carlos Caramelo; Rosa Gazapo; Olga Martin; Francisco R. González-Pacheco; Alberto Tejedor; Rafael Bragado; M.Victoria Alvarez Arroyo

Autocrine expression of VEGF has been detected in endothelial cells under hypoxia or oxidative stress. However, the functional significance of this VEGF autocrine expression remains undefined. To analyze the role of autocrine VEGF in the endothelial response against injury, cultured bovine aorta endothelial cells (BAEC) were challenged with potentially cytotoxic substances with different chemical structure and pharmacologic properties, namely cytochalasin D (CyD), hydrogen peroxide (H2O2) and cyclosporine A (CsA). Our results revealed that: i. In particular conditions, exposure to potentially cytotoxic agents as CyD, H2O2 or CsA results in significant BAEC cytoprotection rather than injury. ii. The response to the 3 agents is shifted to a cell damaging pattern in the presence of a specific anti VEGF monoclonal antibody (mAb). iii. CyD and H2O2 markedly stimulate the autocrine expression of VEGF mRNA and VEGF protein. In conclusion, the present study reveals a protective mechanism of endothelial cells against injury involving autocrine VEGF production. Moreover, the occurrence of a significant increase in VEGF expression accompanying this defensive mechanism is further disclosed.


Journal of Pharmacology and Experimental Therapeutics | 2010

Cilastatin Attenuates Cisplatin-Induced Proximal Tubular Cell Damage

Sonia Camaño; Alberto Lázaro; Estefanía Moreno-Gordaliza; Ana Torres; Carmen de Lucas; Blanca Humanes; Jose A. Lazaro; M. Milagros Gómez-Gómez; Lisardo Boscá; Alberto Tejedor

A major area in cancer therapy is the search for protective strategies against cisplatin-induced nephrotoxicity. We investigated the protective effect of cilastatin on cisplatin-induced injury to renal proximal tubular cells. Cilastatin is a specific inhibitor of renal dehydrodipeptidase I (DHP-I), which prevents hydrolysis of imipenem and its accumulation in the proximal tubule. Primary cultures of proximal cells were treated with cisplatin (1–30 μM) in the presence or absence of cilastatin (200 μg/ml). Apoptosis and mitochondrial injury were assessed by different techniques. Cisplatin uptake and DNA binding were measured by inductively coupled plasma spectrometry. HeLa cells were used to control the effect of cilastatin on the tumoricidal activity of cisplatin. Cisplatin increased cell death, apoptotic-like morphology, caspase activation, and mitochondrial injury in proximal tubular cells in a dose- and time-dependent way. Concomitant treatment with cilastatin reduced cisplatin-induced changes. Cilastatin also reduced the DNA-bound platinum but did not modify cisplatin-dependent up-regulation of death receptors (Fas) or ligands (tumor necrosis factor α, Fas ligand). In contrast, cilastatin did not show any effects on cisplatin-treated HeLa cells. Renal DHP-I was virtually absent in HeLa cells. Cilastatin attenuates cisplatin-induced cell death in proximal tubular cells without reducing the cytotoxic activity of cisplatin in tumor cells. Our findings suggest that the affinity of cilastatin for renal dipeptidase makes this effect specific for proximal tubular cells and may be related to a reduction in intracellular drug accumulation. Therefore, cilastatin administration might represent a novel strategy in the prevention of cisplatin-induced acute renal injury.


Thorax | 2011

Effects of exercise on mitochondrial DNA content in skeletal muscle of patients with COPD

Luis Puente-Maestu; Alberto Lázaro; Alberto Tejedor; Sonia Camaño; Marta Olivas Fuentes; Miguel Cuervo; Beatriz Oláiz Navarro; Alvar Agusti

Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (67±8 years; forced expiratory volume in 1 s (FEV1) 45±8%ref) and 10 healthy controls (66±4 years; FEV1 90±7% ref) cycled 45 min above LT (65% peak oxygen uptake (V′o2peak) and another 7 patients (65±6 years; FEV1 50±4%ref) and 7 controls (56±9 years; FEV1 92±6%ref) cycled 45 min below their LT (50% V′o2peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor-γcoactivator-1α (PGC-1α) mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V′o2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1α mRNA and returned to baseline values 1 week later. This pattern of response was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1α mRNA seen in healthy subjects, probably due to oxidative stress.


American Journal of Respiratory Cell and Molecular Biology | 2012

Site of Mitochondrial Reactive Oxygen Species Production in Skeletal Muscle of Chronic Obstructive Pulmonary Disease and Its Relationship with Exercise Oxidative Stress

Luis Puente-Maestu; Alberto Tejedor; Alberto Lázaro; Javier de Miguel; L. Álvarez-Sala; Federico González-Aragoneses; Carlos Sanz Simón; Alvar Agusti

Exercise triggers skeletal muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD). The objective of this research was to study the specific sites of reactive oxygen species (ROS) production in mitochondria isolated from skeletal muscle of patients with COPD and its relationship with local oxidative stress induced by exercise. Vastus lateralis biopsies were obtained in 16 patients with COPD (66 ± 10 yr; FEV(1), 54 ± 12% ref) and in 14 control subjects with normal lung function who required surgery because of lung cancer (65 ± 7 yr; FEV(1), 91 ± 14% ref) at rest and after exercise. In these biopsies we isolated mitochondria and mitochondrial membrane fragments and determined in vitro mitochondrial oxygen consumption (Mit


Kidney International | 2009

Inhibition of JAK2 protects renal endothelial and epithelial cells from oxidative stress and cyclosporin A toxicity.

Fernando Neria; María Angeles Castilla; Ruth Fernandez Sanchez; Francisco Román González Pacheco; Juan J. P. Deudero; Olalla Calabia; Alberto Tejedor; Félix Manzarbeitia; Alberto Ortiz; Carlos Caramelo


Kidney International | 2012

Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats.

Blanca Humanes; Alberto Lázaro; Sonia Camaño; Estefanía Moreno-Gordaliza; Jose A. Lazaro; Montserrat Blanco-Codesido; Jose Manuel Lara; Alberto Ortiz; María Milagros Gómez-Gómez; Pablo Martín-Vasallo; Alberto Tejedor

\stackrel{.}{\hbox{ V }}

Collaboration


Dive into the Alberto Tejedor's collaboration.

Top Co-Authors

Avatar

Alberto Lázaro

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Blanca Humanes

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ana Torres

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Sonia Camaño

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Luis Puente-Maestu

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. Milagros Gómez-Gómez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisardo Boscá

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marina Mojena

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alvar Agusti

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge