Albertus J. Smit
University of the Western Cape
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albertus J. Smit.
Marine Pollution Bulletin | 2015
Trishan Naidoo; David Glassom; Albertus J. Smit
Monitoring plastic concentrations in estuaries is vital in assessing the magnitude of terrestrial inputs to oceanic environments. Data on plastics ≤ 5 mm in estuaries are scant. This study determined microplastic levels within five estuaries along the Durban coastline and on intervening beaches. Plastics were isolated from estuarine sediment, beach sediment and the surface water of each estuary and characterised. Sediment at the Bayhead area of Durban harbour had the highest average plastic concentrations (745.4 ± 129.7 particles per 500 ml) and an attenuating concentration trend away from the city centre was found. Prevailing south to north longshore drift was hypothesised to result in plastic accumulation on the northern shores of beaches with estuarine effluents, however, this was not found. Fragments composed the largest percent of plastics (59%) found in Bayhead, whereas fibres dominated other estuaries with proportions ranging from 38% of total plastics in the uMgeni estuary to 66% in the Mdloti.
African Journal of Marine Science | 2016
Trishan Naidoo; Albertus J. Smit; David Glassom
Coastal urban environments have high plastic pollution levels, and hence interactions between plastic debris and marine life are frequent. We report on plastic ingestion by mullet Mugil cephalus in Durban Harbour, KwaZulu-Natal, South Africa. Of 70 mullet (13.0–19.5 cm total length), 73% had plastic particles in their guts, with a mean of 3.8 particles per fish (SD 4.7). Plastic ingestion showed no relation to digestive tract content or fish length. White and clear plastic fibres were ingested most commonly. This urban population of M. cephalus had a higher incidence of plastic ingestion than has been reported in studies on fish from other coastal areas or the oceanic environment.
African Journal of Marine Science | 2016
A.M. de Lecea; Albertus J. Smit; St Fennessy
The Thukela Bank, KwaZulu-Natal, supports a diverse ecosystem and South Africa’s only prawn fishery. Oceanographic studies suggest riverine input is not important for the biology of this system, whereas biological studies suggest the contrary, with prawn catches increasing with increased fluvial run-off. The aim of this study was to determine (i) the importance of riverine and marine organic matter for the Thukela Bank food web; and (ii) whether there are seasonal changes in the Thukela River stable isotope values, and, if so, whether these are reflected in the isotope values of demersal organisms. Estuarine organic matter, sediments and demersal organisms were collected from several sites across the bank in the wet and dry seasons of 2008, 2009 and 2010. Marine particulate organic matter was also collected in 2010 and analysed for δ13C and δ15N, as well as C/N ratios. There were strong seasonal changes in isotopic values of organic matter and fauna, especially faunal δ13C. There was an apparent time-lag in organisms assimilating riverine organic matter isotopic values, with the isotopic signature of demersal organisms reflecting that of riverine organic matter from the previous season, which is likely the result of tissue turnover time. In 2010, Thukela Bank sediment organic matter was of riverine origin and this maintained the demersal food web. We conclude that Thukela River organic matter is an important input to the food web of the Thukela Bank, indicating that any future damming of the catchment area could have serious consequences for this ecosystem.
African Journal of Marine Science | 2014
Sj du Plooy; Albertus J. Smit; R Perissinotto; D Muir
Worldwide, persistent cyanobacterial blooms are becoming more frequent and are often associated with effects of global climate change. In June 2009, a widespread bloom of the unicellular cyanobacterium, Cyanothece sp., appeared in North Lake and False Bay of Lake St Lucia – a large (360 km2) estuarine lake system in KwaZulu-Natal, South Africa – and persisted for 18 months. It remains unclear how the bloom status was maintained for so long. This study investigates aspects of the nutrient uptake dynamics of Cyanothece sp. and how this process may relate to maintaining a persistent bloom state during hypersaline conditions. 15N nutrient uptake experiments were performed to evaluate the effect of the most important environmental variables on the nutrient uptake rate of Cyanothece sp. Highest 15N uptake rates were during salinities of 35 and temperatures of 30 °C for both N sources (43.9 [SE 18.3] and 85.5 [SE 42.9] µg atom N l–1 h–1 for and respectively). In contrast, at high salinities of 160 and low temperatures of 10 °C, and uptake rates were low (3.76 [SE 0.23] and 14.5 [SE 6.40] µg atom N l–1 h–1 respectively). Hence nutrient uptake was significantly influenced by environmental variables, particularly salinity, which suppressed uptake rates, and temperature, which facilitated them. The long-term bloom maintenance appears to be attributed to efficient nutrient uptake rates, absence of grazers during the hypersaline phase, and the ability of Cyanothece sp. to outcompete other microalgae at temperatures >25 °C.
Marine and Freshwater Research | 2016
Ander M. de Lecea; Rachel Cooper; Albertus J. Smit
The international literature highlights the importance of understanding the role and fate of terrestrial organic matter (OM) in the marine system, yet little is known about this on the oligotrophic east coast of South Africa. Within the Bight, three important processes make OM biologically available: (1) a topographically induced upwelling cell (north), (2) a Cyclonic Eddy (south), and (3) riverine input. We hypothesise that: (i) these OM sources differ substantially in their isotope ratios, and (ii) zooplankton at the inshore region has an isotope signature linked to localised fluvial fluxes. Particulate OM samples were collected at five locations along the Bight and in three main estuaries during austral summer and winter seasons in 2010 and subjected to isotopic and mixing model analysis. Riverine input played an important role in this ecosystem inshore during the wet season. Only marine OM played a role as a biological driver offshore and at all sites during the dry season. Although there were indications that the upwelling cell did occur, it was not confirmed as active in either season. The current study provides valuable insights into the Bights biological functioning and principle insights into the fate of terrestrial organic carbon on the east coast of southern Africa.
Journal of Climate | 2016
Robert W. Schlegel; Albertus J. Smit
AbstractIn South Africa, 129 in situ temperature time series of up to 43 years are used for investigations of the thermal characteristics of coastal seawater. They are collected with handheld thermometers or underwater temperature recorders (UTRs) and are recorded at precisions from 0.5° to 0.001°C. Using the natural range of seasonal signals and variability for 84 of these time series, their length, decadal trend, and data precision were systematically varied before fitting generalized least squares (GLS) models to study the effect these variables have on trend detection. The variables that contributed most to accurate trend detection, in decreasing order, were time series length, decadal trend, variance, percentage of missing data (% NA), and measurement precision. Time series greater than 30 years in length are preferred and although larger decadal trends are modeled more accurately, modeled significance (p value) is largely affected by the variance present. The risk of committing both type-1 and type-...
Frontiers in Marine Science | 2017
Robert W. Schlegel; Eric C. J. Oliver; Sarah E. Perkins-Kirkpatrick; Andries C. Kruger; Albertus J. Smit
As the mean temperatures of the worlds oceans increase, it is predicted that marine heatwaves (MHWs) will occur more frequently and with increased severity. However, it has been shown that variables other than increases in sea water temperature have been responsible for MHWs. To better understand these mechanisms driving MHWs we have utilised atmospheric (ERA-Interim) and oceanic (OISST, AVISO) data to examine the patterns around southern Africa during coastal (<400 m from the low water mark; measured in situ) MHWs. Nonmetric multidimensional scaling (NMDS) was first used to determine that the atmospheric and oceanic states during MHW are different from daily climatological states. Self-organising maps (SOMs) were then used to cluster the MHW states into one of nine nodes to determine the predominant atmospheric and oceanic patterns present during these events. It was found that warm water forced onto the coast via anomalous ocean circulation was the predominant oceanic pattern during MHWs. Warm atmospheric temperatures over the subcontinent during onshore or alongshore winds were the most prominent atmospheric patterns. Roughly one third of the MHWs were clustered into a node with no clear patterns, which implied that they were not forced by a recurring atmospheric or oceanic state that could be described by the SOM analysis. Because warm atmospheric and/or oceanic temperature anomalies were not the only pattern associated with MHWs, the current trend of a warming earth does not necessarily mean that MHWs will increase apace; however, aseasonal variability in wind and current patterns was shown to be central to the formation of coastal MHWs, meaning that where climate systems shift from historic records, increases in MHWs will likely occur.
Frontiers in Marine Science | 2015
Marisol García-Reyes; William J. Sydeman; David S. Schoeman; Ryan R. Rykaczewski; Bryan A. Black; Albertus J. Smit; Steven J. Bograd
Progress in Oceanography | 2017
Robert W. Schlegel; Eric C. J. Oliver; Thomas Wernberg; Albertus J. Smit
Aquatic Microbial Ecology | 2015
S. J. du Plooy; Renzo Perissinotto; Albertus J. Smit; David G. Muir