Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albrecht Fröhlich is active.

Publication


Featured researches published by Albrecht Fröhlich.


Archive | 1983

Galois module structure of algebraic integers

Albrecht Fröhlich

Notation and Conventions.- I. Survey of Results.- 1. The Background.- 2. The Classgroup.- 3. Ramification and Module Structure.- 4. Resolvents.- 5. L-Functions and Galois Gauss Sums.- 6. Symplectic Root Numbers and the Class UN/K.- 7. Some Problems and Examples.- Notes to Chapter I.- II. Classgroups and Determinants.- 1. Hom-Description.- 2. Localization.- 3. Change in Basefield and Change in Group.- 4. Reduction mod l and Some Computations.- 5. The Logarithm for Group Rings.- 6. Galois Properties of the Determinant.- Notes to Chapter II.- III. Resolvents, Galois Gauss Sums, Root Numbers, Conductors.- 1. Preliminaries.- 2. Localization of Galois Gauss Sums and of Resolvents.- 3. Galois Action.- 4. Signatures.- 5. The Local Main Theorems.- 6. Non-Ramified Base Field Extension.- 7. Abelian Characters, Completion of Proofs.- 8. Module Conductors and Module Resolvents.- Notes to Chapter III.- IV. Congruences and Logarithmic Values.- 1. The Non-Ramified Characteristic.- 2. Proof of Theorem 31.- 3. Reduction Steps for Theorem 30.- 4. Strategy for Theorem 32.- 5. Gauss Sum Logarithm.- 6. The Congruence Theorems.- 7. The Arithmetic Theory of Tame Local Galois Gauss Sums.- Notes to Chapter IV.- V. Root Number Values.- 1. The Arithmetic of Quaternion Characters.- 2. Root Number Formulae.- 3. Density Results.- 4. The Distribution Theorem.- VI. Relative Structure.- 1. The Background.- 2. Galois Module Structure and the Embedding Problem.- 3. An Example.- 4. Generalized Kummer Theory.- 5. The Generalized Class Number Formula and the Generalized Stickelberger Relation.- Literature List.- List of Theorems.- Some Further Notation.


Archive | 1983

Gauss sums and p-adic division algebras

Colin J. Bushnell; Albrecht Fröhlich

Arithmetic of local division algebras.- to Gauss Sums.- Functional equation.- One-dimensional representations.- The basic correspondence.- The basic inductive step.- The general inductive process.- Representations of certain group extensions.- Trace computations.- Induction constants for Galois Gauss sums.- Synthesis of results.- modified correspondences.


Archive | 1984

Classgroups and Hermitian Modules

Albrecht Fröhlich

I Preliminaries.- 1 Locally free modules and locally freely presented torsion modules.- 2 Determinants and the Hom language for classgroups.- 3 Supplement at infinity.- II Involution algebras and the Hermitian classgroup.- 1 Involution algebras and duality.- 2 Hermitian modules.- 3 Pfaffians of matrices.- 4 Pfaffians of algebras.- 5 Discriminants and the Hermitian classgroup.- 6 Some homomorphisms.- 7 Pulling back discriminants.- 8 Unimodular modules.- 8 Products.- III Indecomposable involution algebras.- 1 Dictionary.- 2 The map P.- 3 Discriminants once more.- 4 Norms of automorphisms.- 5 Unimodular classes once more.- IV Change of order.- 1 Going up.- 2 Going down.- V Groups.- 1 Characters.- 2 Character action. Ordinary theory.- 3 Character action. Hermitian theory.- 4 Special formulae.- 5 Special properties of the group ring involution.- 6 Some Frobenius modules.- 7 Some subgroups of the adelic Hermitian classgroup.- VI Applications in arithmetic.- 1 Local theory.- 2 The global discriminant.- Literature.- List of Theorems.- Some further notation.


Philosophical Transactions of the Royal Society A | 1959

The Rational Characterization of Certain Sets of Relatively Abelian Extensions

Albrecht Fröhlich

Let H be a class group— in the sense of class-field theory— in the rational field P, whose order is some power of a prime l. With H there is associated an Abelian extension K of P. The purpose of this paper is to determine in rational terms and for all fields K given in the described manner, the set T(K/P) of cyclic extensions A of K of relative degree l, which are absolutely normal. In particular we shall find the ramification laws for these fields A, and the possible extension types of a group of order l by the Galois group of K, which are realized in Galois groups of fields in T(K/P). It is fundamental to the programme outlined, that we aim at obtaining purely rational criteria of determination.


Philosophical Transactions of the Royal Society A | 1956

Effective Procedures in Field Theory

Albrecht Fröhlich; John C. Shepherdson


Proceedings of The London Mathematical Society | 1958

Distributively Generated Near‐Rings: (I. Ideal Theory)

Albrecht Fröhlich


Archive | 1983

Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields

Albrecht Fröhlich


Inventiones Mathematicae | 1972

Artin-root numbers and normal integral bases for quaternion fields

Albrecht Fröhlich


Mathematische Zeitschrift | 1960

Discriminants of algebraic number fields.

Albrecht Fröhlich


Proceedings of The London Mathematical Society | 1972

Orthogonal and Symplectic Representations of Groups

Albrecht Fröhlich

Collaboration


Dive into the Albrecht Fröhlich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge