Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albrecht Ingo Schmid is active.

Publication


Featured researches published by Albrecht Ingo Schmid.


PLOS Medicine | 2007

Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes.

Julia Szendroedi; Albrecht Ingo Schmid; Marek Chmelik; Christian Toth; Attila Brehm; Martin Krssak; Peter Nowotny; Michael Wolzt; Werner Waldhäusl; Michael Roden

Background Muscular insulin resistance is frequently characterized by blunted increases in glucose-6-phosphate (G-6-P) reflecting impaired glucose transport/phosphorylation. These abnormalities likely relate to excessive intramyocellular lipids and mitochondrial dysfunction. We hypothesized that alterations in insulin action and mitochondrial function should be present even in nonobese patients with well-controlled type 2 diabetes mellitus (T2DM). Methods and Findings We measured G-6-P, ATP synthetic flux (i.e., synthesis) and lipid contents of skeletal muscle with 31P/1H magnetic resonance spectroscopy in ten patients with T2DM and in two control groups: ten sex-, age-, and body mass-matched elderly people; and 11 younger healthy individuals. Although insulin sensitivity was lower in patients with T2DM, muscle lipid contents were comparable and hyperinsulinemia increased G-6-P by 50% (95% confidence interval [CI] 39%–99%) in all groups. Patients with diabetes had 27% lower fasting ATP synthetic flux compared to younger controls (p = 0.031). Insulin stimulation increased ATP synthetic flux only in controls (younger: 26%, 95% CI 13%–42%; older: 11%, 95% CI 2%–25%), but failed to increase even during hyperglycemic hyperinsulinemia in patients with T2DM. Fasting free fatty acids and waist-to-hip ratios explained 44% of basal ATP synthetic flux. Insulin sensitivity explained 30% of insulin-stimulated ATP synthetic flux. Conclusions Patients with well-controlled T2DM feature slightly lower flux through muscle ATP synthesis, which occurs independently of glucose transport /phosphorylation and lipid deposition but is determined by lipid availability and insulin sensitivity. Furthermore, the reduction in insulin-stimulated glucose disposal despite normal glucose transport/phosphorylation suggests further abnormalities mainly in glycogen synthesis in these patients.


Hepatology | 2009

Abnormal hepatic energy homeostasis in type 2 diabetes

Julia Szendroedi; Marek Chmelik; Albrecht Ingo Schmid; Peter Nowotny; Attila Brehm; Martin Krssak; Ewald Moser; Michael Roden

Increased hepatocellular lipids relate to insulin resistance and are typical for individuals with type 2 diabetes mellitus (T2DM). Steatosis and T2DM have been further associated with impaired muscular adenosine triphosphate (ATP) turnover indicating reduced mitochondrial fitness. Thus, we tested the hypothesis that hepatic energy metabolism could be impaired even in metabolically well‐controlled T2DM. We measured hepatic lipid volume fraction (HLVF) and absolute concentrations of γATP, inorganic phosphate (Pi), phosphomonoesters and phosphodiesters using noninvasive 1H/ 31P magnetic resonance spectroscopy in individuals with T2DM (58 ± 6 years, 27 ± 3 kg/m 2), and age‐matched and body mass index–matched (mCON; 61 ± 4 years, 26 ± 4 kg/m 2) and young lean humans (yCON; 25 ± 3 years, 22 ± 2 kg/m 2, P < 0.005, P < 0.05 versus T2DM and mCON). Insulin‐mediated whole‐body glucose disposal (M) and endogenous glucose production (iEGP) were assessed during euglycemic‐hyperinsulinemic clamps. Individuals with T2DM had 26% and 23% lower γATP (1.68 ± 0.11; 2.26 ± 0.20; 2.20 ± 0.09 mmol/L; P < 0.05) than mCON and yCON individuals, respectively. Further, they had 28% and 31% lower Pi than did individuals from the mCON and yCON groups (0.96 ± 0.06; 1.33 ± 0.13; 1.41 ± 0.07 mmol/L; P < 0.05). Phosphomonoesters, phosphodiesters, and liver aminotransferases did not differ between groups. HLVF was not different between those from the T2DM and mCON groups, but higher (P = 0.002) than in those from the yCON group. T2DM had 13‐fold higher iEGP than mCON (P < 0.05). Even after adjustment for HLVF, hepatic ATP and Pi related negatively to hepatic insulin sensitivity (iEGP) (r =‐0.665, P = 0.010, r =‐0.680, P = 0.007) but not to whole‐body insulin sensitivity. Conclusion: These data suggest that impaired hepatic energy metabolism and insulin resistance could precede the development of steatosis in individuals with T2DM. (HEPATOLOGY 2009.)


Diabetes Care | 2011

Liver ATP Synthesis Is Lower and Relates to Insulin Sensitivity in Patients With Type 2 Diabetes

Albrecht Ingo Schmid; Julia Szendroedi; Marek Chmelik; Martin Krssak; Ewald Moser; Michael Roden

OBJECTIVE Steatosis associates with insulin resistance and may even predict type 2 diabetes and cardiovascular complications. Because muscular insulin resistance relates to myocellular fat deposition and disturbed energy metabolism, we hypothesized that reduced hepatic ATP turnover (fATP) underlies insulin resistance and elevated hepatocellular lipid (HCL) contents. RESEARCH DESIGN AND METHODS We measured hepatic fATP using 31P magnetic resonance spectroscopy in patients with type 2 diabetes and age- and body mass–matched controls. Peripheral (M and M/I) and hepatic (suppression of endogenous glucose production) insulin sensitivity were assessed with euglycemic-hyperinsulinemic clamps. RESULTS Diabetic individuals had 29% and 28% lower peripheral and hepatic insulin sensitivity as well as 42% reduced fATP than controls. After adjusting for HCL, fATP correlated positively with peripheral and hepatic insulin sensitivity but negatively with waist circumference, BMI, and fasting plasma glucose. Multiple regression analysis identified waist circumference as an independent predictor of fATP and inorganic phosphate (PI) concentrations, explaining 65% (P = 0.001) and 56% (P = 0.003) of the variations. Hepatocellular PI primarily determined the alterations in fATP. CONCLUSIONS In patients with type 2 diabetes, insulin resistance relates to perturbed hepatic energy metabolism, which is at least partly accounted for by fat depots.


Magnetic Resonance in Medicine | 2009

Assessment of 31P relaxation times in the human calf muscle: A comparison between 3 T and 7 T in vivo

Wolfgang Bogner; Marek Chmelik; Albrecht Ingo Schmid; Ewald Moser; Siegfried Trattnig; Staci A. Gruber

Phosphorus (31P) T1 and T2 relaxation times in the resting human calf muscle were assessed by interleaved, surface coil localized inversion recovery and frequency‐selective spin‐echo at 3 and 7 T. The obtained T1 (mean ± SD) decreased significantly (P < 0.05) from 3 to 7 T for phosphomonoesters (PME) (8.1 ± 1.7 s to 3.1 ± 0.9 s), phosphodiesters (PDE) (8.6 ± 1.2 s to 6.0 ± 1.1 s), phosphocreatine (PCr) (6.7 ± 0.4 s to 4.0 ± 0.2 s), γ‐NTP (nucleotide triphosphate) (5.5 ± 0.4 s to 3.3 ± 0.2 s), α‐NTP (3.4 ± 0.3 s to 1.8 ± 0.1 s), and β‐NTP (3.9 ± 0.4 s to 1.8 ± 0.1 s), but not for inorganic phosphate (Pi) (6.9 ± 0.6 s to 6.3 ± 1.0 s). The decrease in T2 was significant for Pi (153 ± 9 ms to 109 ± 17 ms), PDE (414 ± 128 ms to 314 ± 35 ms), PCr (354 ± 16 ms to 217 ± 14 ms), and γ‐NTP (61.9 ± 8.6 ms to 29.0 ± 3.3 ms). This decrease in T1 with increasing field strength of up to 62% can be explained by the increasing influence of chemical shift anisotropy on relaxation mechanisms and may allow shorter measurements at higher field strengths or up to 62% additional signal‐to‐noise ratio (SNR) per unit time. The fully relaxed SNR increased by +96%, while the linewidth increased from 6.5 ± 1.2 Hz to 11.2 ± 1.9 Hz or +72%. At 7 T 31P‐MRS in the human calf muscle offers more than twice as much SNR per unit time in reduced measurement time compared to 3 T. This will facilitate in vivo 31P‐MRS of the human muscle at 7 T. Magn Reson Med, 2009.


Diabetes Care | 2009

Impaired Mitochondrial Function and Insulin Resistance of Skeletal Muscle in Mitochondrial Diabetes

Julia Szendroedi; Albrecht Ingo Schmid; Martin Meyerspeer; Camilla Cervin; Michaela Kacerovsky; Gerhard Smekal; Sabine Gräser-Lang; Leif Groop; Michael Roden

OBJECTIVE Impaired muscular mitochondrial function is related to common insulin resistance in type 2 diabetes. Mitochondrial diseases frequently lead to diabetes, which is mostly attributed to defective β-cell mitochondria and secretion. RESEARCH DESIGN AND METHODS We assessed muscular mitochondrial function and lipid deposition in liver (hepatocellular lipids [HCLs]) and muscle (intramyocellular lipids [IMCLs]) using 31P/1H magnetic resonance spectroscopy and insulin sensitivity and endogenous glucose production (EGP) using hyperinsulinemic-euglycemic clamps combined with isotopic tracer dilution in one female patient suffering from MELAS (myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) syndrome and in six control subjects. RESULTS The MELAS patient showed impaired insulin sensitivity (4.3 vs. 8.6 ± 0.5 mg · kg−1 · min−1) and suppression of EGP (69 vs. 94 ± 1%), and her baseline and insulin-stimulated ATP synthesis were reduced (7.3 and 8.9 vs. 10.6 ± 1.0 and 12.8 ± 1.3 μmol · l−1 · min−1) compared with those of the control subjects. HCLs and IMCLs were comparable between the MELAS patient and control subjects. CONCLUSIONS Impairment of muscle mitochondrial fitness promotes insulin resistance and could thereby contribute to the development of diabetes in some patients with the MELAS syndrome.


Diabetes | 2009

Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes

Gertrud Kacerovsky-Bielesz; Marek Chmelik; Charlotte Ling; Rochus Pokan; Julia Szendroedi; Michaela Farukuoye; Michaela Kacerovsky; Albrecht Ingo Schmid; Stephan Gruber; Michael Wolzt; Ewald Moser; Giovanni Pacini; Gerhard Smekal; Leif Groop; Michael Roden

OBJECTIVE We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations with gene polymorphisms. RESEARCH DESIGN AND METHODS We studied 24 nonobese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using1H and31P magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467). RESULTS Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O2uptake and insulin sensitivity. CONCLUSIONS The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. In addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training.


Magnetic Resonance in Medicine | 2012

Comparison of measuring energy metabolism by different (31) P-magnetic resonance spectroscopy techniques in resting, ischemic, and exercising muscle.

Albrecht Ingo Schmid; Vera B. Schrauwen-Hinderling; Martin Andreas; Michael Wolzt; Ewald Moser; Michael Roden

Alternate methods to quantify mitochondrial activity or function have been extensively used for studying insulin resistance and type 2 diabetes mellitus, namely saturation transfer and phosphocreatine (PCr) recovery. As these methods are in fact determining different parameters, this study aimed to compare saturation transfer results to PCr recovery measurements within the same group. Fifteen subjects underwent saturation transfer and ischemic exercise‐recovery experiments. PCr decrease during ischemia (Q), induced by cuff inflation, served as an additional measure of resting ATP (adenosine triphosphate) production. ATP synthetic rate (fATP) measured by saturation transfer (0.234 ± 0.043 mM/s) was greater than (Q = 0.0077 ± 0.0011 mM/s), but correlated well with Q (r = 0.63 P = 0.013). Parameters of PCr recovery correlated well with fATP (Qmax,lin: r = 0.71, P = 0.003, Qmax,ADP: r = 0.66, P = 0.007) and Q (Qmax,lin: r = 0.92, P = 0.000002, Qmax,ADP: r = 0.76, P = 0.001). In conclusion, although saturation transfer yields higher ATP synthetic rates than PCr decrease during ischemia, their significant correlation indicates that fATP can be used as a marker of mitochondrial activity. The finding that both Q and fATP correlate with PCr recovery kinetics suggests that skeletal muscle with greater maximal aerobic ATP synthetic rates is also metabolically more active at rest. Magn Reson Med, 2011.


Diabetes Care | 2011

Body and liver fat mass rather than muscle mitochondrial function determine glucose metabolism in women with a history of gestational diabetes mellitus.

Thomas Prikoszovich; Christine Winzer; Albrecht Ingo Schmid; Julia Szendroedi; Marek Chmelik; Giovanni Pacini; Martin Krssak; Ewald Moser; Tohru Funahashi; Werner Waldhäusl; Alexandra Kautzky-Willer; Michael Roden

OBJECTIVE Ectopic lipid storage in muscle (intramyocellular lipids [IMCL]) and liver (hepatocellular lipids [HCL]) coexists with impaired myocellular flux through ATP synthase (fATPase) in certain cohorts with increased risk of type 2 diabetes. Because women with a history of gestational diabetes mellitus (pGDM) have elevated ectopic lipids and diabetes risk, we tested whether deteriorated energy metabolism contributes to these abnormalities. RESEARCH DESIGN AND METHODS A total of 23 glucose-tolerant nonobese pGDM and eight women with normal glucose metabolism during pregnancy with similar age, body mass, and physical activity underwent oral glucose tolerance tests (OGTT) and intravenous glucose tolerance tests at 4–5 years after delivery. OGTT values <463 mL ⋅ min−1 ⋅ m−2 were considered to indicate insulin resistance. pGDM were further stratified into insulin-resistant (pGDM-IR) and insulin-sensitive (pGDM-IS) groups. IMCL, HCL, and fATPase were measured with 1H/31P magnetic resonance spectroscopy. RESULTS pGDM had 36% higher fat mass and 12% lower insulin sensitivity. Log-transformed fATPase was lower in pGDM (10.6 ± 3.8 µmol ⋅ mL muscle−1 ⋅ min−1 vs. 12.1 ± 1.4 µmol ⋅ mL muscle−1 ⋅ min−1, P < 0.03) and related to plasma adiponectin after adjustment for body fat (r = 0.44, P < 0.04). IMCL were 61% and 69% higher in pGDM-IR (P < 0.05 vs. pGDM-IS) and insulin resistant women (P < 0.003 vs. insulin sensitive), respectively. HCL were doubled (P < 0.05) in pGDM and insulin resistant women, and correlated positively with body fat mass (r = 0.50, P < 0.01) and inversely with insulin sensitivity (r = −0.46, P < 0.05). CONCLUSIONS Glucose-tolerant pGDM show increased liver fat but only slightly lower muscular insulin sensitivity and ATP synthesis. This suggests that alteration of hepatic lipid storage represents an early and predominant abnormality in this cohort.


Magnetic Resonance in Medicine | 2008

Three-dimensional high-resolution magnetic resonance spectroscopic imaging for absolute quantification of 31P metabolites in human liver.

Marek Chmelik; Albrecht Ingo Schmid; Staci A. Gruber; Julia Szendroedi; Martin Krssak; Siegfried Trattnig; Ewald Moser; Michael Roden

Liver dysfunction correlates with alterations of intracellular concentrations of 31P metabolites. Localization and absolute quantification should help to trace regional hepatic metabolism. An improved protocol for the absolute quantification of 31P metabolites in vivo in human liver was developed by employing three‐dimensional (3D) k‐space weighted spectroscopic imaging (MRSI) with B1‐insensitive adiabatic excitation. The protocol allowed for high spatial resolution of 17.8 ± 0.22 cm3 in 34 min at 3 T. No pulse adjustment prior to MRSI measurement was necessary due to adiabatic excitation. The protocol geometry was identical for all measurements so that one calibration data set, acquired from phantom replacement measurement, was applied for all quantifications. The protocol was tested in 10 young, healthy volunteers, for whom 57 ± 7 spectra were quantified. Concentrations per liter of liver volume (reproducibilities) were 2.24 ± 0.10 mmol/L (1.8%) for phosphomonoesters (PME), 1.37 ± 0.07 mmol/L (7.9%) for inorganic phosphate (Pi), 11.40 ± 0.96 mmol/L (2.9%) for phosphodiesters (PDE), and 2.14 ± 0.10 mmol/L (1.6%) for adenosine triphosphate (ATP), respectively. Taken together, this approach provides fast, simple, and reproducible high‐resolution absolute quantification and detailed mapping of the spatial distribution of hepatic 31P metabolites. This method allows for examination of regional deviations of energy metabolism in human liver diseases. Magn Reson Med 60:796–802, 2008.


Journal of Cardiovascular Magnetic Resonance | 2011

Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial

Martin Andreas; Albrecht Ingo Schmid; M Keilani; Daniel Doberer; Johann Bartko; Richard Crevenna; Ewald Moser; Michael Wolzt

BackgroundNuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate whether NMR could detect the effects of ischemic preconditioning (IPC) in healthy subjects.MethodsTwenty-three participants were included in two randomized crossover protocols in which the effects of IPC were measured by NMR and muscle force assessments. Leg ischemia was administered for 20 minutes with or without a subsequent impaired reperfusion for 5 minutes (stenosis model). IPC was administered 4 or 48 hours prior to ischemia. Changes in 31phosphate NMR spectroscopy and blood oxygen level-dependent (BOLD) signals were recorded. 3-Tesla NMR data were compared to those obtained for isometric muscular strength.ResultsThe phosphocreatine (PCr) signal decreased robustly during ischemia and recovered rapidly during reperfusion. In contrast to PCr, the recovery of muscular strength was slow. During post-ischemic stenosis, PCr increased only slightly. The BOLD signal intensity decreased during ischemia, ischemic exercise and post-ischemic stenosis but increased during hyperemic reperfusion. IPC 4 hours prior to ischemia significantly increased the maximal PCr reperfusion signal and mitigated the peak BOLD signal during reperfusion.ConclusionsIschemic preconditioning positively influenced muscle metabolism during reperfusion; this resulted in an increase in PCr production and higher oxygen consumption, thereby mitigating the peak BOLD signal. In addition, an impairment of energy replenishment during the low-flow reperfusion was detected in this model. Thus, functional NMR is capable of characterizing changes in reperfusion and in therapeutic interventions in vivo.Trial RegistrationClinicalTrials.gov: NCT00883467

Collaboration


Dive into the Albrecht Ingo Schmid's collaboration.

Top Co-Authors

Avatar

Ewald Moser

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Roden

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Michael Wolzt

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Marek Chmelik

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Meyerspeer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Martin Krssak

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Georg B. Fiedler

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Peter Nowotny

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Sigrun Goluch

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge