Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albrecht Ludwig is active.

Publication


Featured researches published by Albrecht Ludwig.


Molecular Genetics and Genomics | 1988

The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes

Albrecht Ludwig; Thomas Jarchau; Roland Benz; Werner Goebel

SummaryThe haemolysin protein (HlyA) of Escherichia coli contains 11 tandemly repeated sequences consisting of 9 amino acids each between amino acids 739 and 849 of HlyA. We removed, by oligonucleotide-directed mutagenesis, different single repeats and combinations of several repeats. The resulting mutant proteins were perfectly stable in E. coli and were secreted with the same efficiency as the wild-type HlyA. HlyA proteins which had lost a single repeat only were still haemolytically active (in the presence of HlyC) but required elevated levels of Ca2+ for activity, as compared to the wild-type haemolysin. Removal of three or more repeats led to the complete loss of the haemolytic activity even in the presence of high Ca2+ concentrations. The mutant haemolysins were unable to compete with the wild-type haemolysin for binding to erythrocytes at low Ca2+ concentrations but could still generate ion-permeable channels in artificial lipid bilayer membranes formed of plant asolectin, even in the complete absence of Ca2+. These data indicate that the repeat domain of haemolysin is responsible for Ca2+-dependent binding of haemolysin to the erythrocyte membrane. A model for the possible functional role of Ca2+ in haemolysis is presented.


Antimicrobial Agents and Chemotherapy | 2008

Linezolid Resistance in Staphylococcus aureus: Gene Dosage Effect, Stability, Fitness Costs, and Cross-Resistances

Silke Besier; Albrecht Ludwig; Johannes Zander; Volker Brade; Thomas A. Wichelhaus

ABSTRACT Linezolid resistance in Staphylococcus aureus is typically associated with mutations in the 23S rRNA gene. Here we show that the accumulation of a single point mutation, G2576T, in the different copies of this gene causes stepwise increases in resistance, impairment of the biological fitness, and cross-resistance to quinupristin-dalfopristin and chloramphenicol.


Molecular Genetics and Genomics | 1995

SlyA, a regulatory protein from Salmonella typhimurium, induces a haemolytic and pore-forming protein in Escherichia coli

Albrecht Ludwig; Claudia Tengel; Susanne Bauer; Andreas Bubert; Roland Benz; Hans-Joachim Mollenkopf; Werner Goebel

A chromosomal fragment from Salmonella typhimurium, when cloned in Escherichia coli, generates a haemolytic phenotype. This fragment carries two genes, termed slyA and slyB. The expression of slyA is sufficient for the haemolytic phenotype. The haemolytic activity of E. coli carrying multiple copies of slyA is found mainly in the cytoplasm, with some in the periplasm of cells grown to stationary phase, but overexpression of SlyB, a 15 kDa lipoprotein probably located in the outer membrane, may lead to enhanced, albeit unspecific, release of the haemolytic activity into the medium. Polyclonal antibodies raised against a purified SlyA-HlyA fusion protein identified the over-expressed monomeric 17 kDa SlyA protein mainly in the cytoplasm of E. coli grown to stationary phase, although smaller amounts were also found in the periplasm and even in the culture supernatant. However, the anti-SlyA antibodies reacted with the SlyA protein in a periplasmic fraction that did not contain the haemolytic activity. Conversely, the periplasmic fraction exhibiting haemolytic activity did not contain the 17 kDa SlyA protein. Furthermore, S. typhimurium transformed with multiple copies of the slyA gene did not show a haemolytic phenotype when grown in rich culture media, although the SlyA protein was expressed in amounts similar to those in the recombinant E. coli strain. These results indicate that SlyA is not itself a cytolysin but rather induces in E. coli (but not in S. typhimurium) the synthesis of an uncharacterised, haemolytically active protein which forms pores with a diameter of about 2.6 nm in an artificial lipid bilayer. The SlyA protein thus seems to represent a regulation factor in Salmonella, as is also suggested by the similarity of the SlyA protein to some other bacterial regulatory proteins. slyA- and slyB-related genes were also obtained by PCR from E. coli, Shigella sp. and Citrobacter diversus but not from several other gram-negative bacteria tested.


Molecular Microbiology | 1999

Analysis of the SlyA‐controlled expression, subcellular localization and pore‐forming activity of a 34 kDa haemolysin (ClyA) from Escherichia coli K‐12

Albrecht Ludwig; Susanne Bauer; Roland Benz; Birgit Bergmann; Werner Goebel

Escherichia coli K‐12 harbours a chromosomal gene, clyA (sheA, hlyE ), that encodes a haemolytic 34 kDa protein. Recombinant E. coli overexpressing the cloned clyA gene accumulated this haemolysin in the periplasm and released only very small amounts of it into the external medium. The secretion of ClyA was confined to the log phase and paralleled by the partial release of several other periplasmic proteins. Sequencing of ClyA revealed the translational start point of the clyA gene and demonstrated that the clyA gene product is not N‐terminally processed during transport. The transcription of clyA from its native promoter region was positively controlled by SlyA, a regulatory protein found in E. coli, Salmonella typhimurium and other Enterobacteriaceae. SlyA‐controlled transcription started predominantly 72 bp upstream from clyAas shown by primer extension. The corresponding putative promoter contains an unusual −10 sequence (TATGAAT) that is separated from a conventional −35 sequence by a GC‐rich spacer. Site‐directed deletion of the G in the −10 sequence abrogated the SlyA requirement for strong ClyA production, whereas a reduction in the G+C content of the spacer diminished the capability of SlyA to activate the clyA expression. Osmotic protection assays and lipid bilayer experiments suggested that ClyA forms stable, moderately cation‐selective transmembrane pores that have a diameter of about 2.5–3 nm.


Molecular Genetics and Genomics | 1987

Mutations affecting activity and transport of haemolysin in Escherichia coli

Albrecht Ludwig; Monika Vogel; Werner Goebel

SummaryTemperature-sensitive mutants that exhibit an altered haemolytic phenotype were isolated from Escherichia coli harbouring the plasmid pHly152. Complementation with recombinant plasmids carrying one of the four hly genes (C, A, B or D) allowed localization of the hlyts mutations. A ts mutation in hlyC leads to a pro→leu exchange in amino acid position 53 of HlyC. Two ts mutations in HlyA were found in positions 312 (ser→pro) and 315 (thr→ile). Both amino acid exchanges are located in the same hydrophobic domain of HlyA which extends from amino acids 299 to 327. Two different mutations were introduced by site-specific mutagenesis in this hlyA domain: one by an exchange of ala, val to asp, glu (positions 313, 314) altering the hydrophobicity of this region and another which removes most of this hydrophobic portion. Both mutants have entirely lost the haemolytic activity but the mutant haemolysins are still efficiently transported across both membranes when hlyB and hlyD are provided. Functional HlyC is not required for the transport of the mutant haemolysins. Two site-specific mutations at the N-terminal end of hlyA (one at amino acid position 2 leading to a thr→pro exchange and another deleting ile and thr at positions 4 and 5) also do not affect the transport of the altered haemolysins. The thr→pro exchange enhances the haemolytic activity of the corresponding mutant, whereas the ile, thr deletion exhibits little or no effect on the haemolytic activity. Removal of the last 37 amino acids from the C-terminal end of HlyA leads to a truncated haemolysin which retains its haemolytic activity but is not secreted by the HlyB and HlyD transport system.


Antimicrobial Agents and Chemotherapy | 2002

Biological Cost of Rifampin Resistance from the Perspective of Staphylococcus aureus

Thomas A. Wichelhaus; Boris Böddinghaus; Silke Besier; Volker Schäfer; Volker Brade; Albrecht Ludwig

ABSTRACT Resistance determinants that interfere with normal physiological processes in the bacterial cell usually cause a reduction in biological fitness. Fitness assays revealed that 17 of 18 in vitro-selected chromosomal mutations within the rpoB gene accounting for rifampin resistance in Staphylococcus aureus were associated with a reduction in the level of fitness. There was no obvious correlation between the level of resistance to rifampin and the level of fitness loss caused by rpoB mutations. Among 23 clinical rifampin-resistant S. aureus isolates from six countries, only seven different rpoB genotypes could be identified, whereby the mutation 481His→Asn was present in 21 (91%) of these 23 isolates. The mutation 481His→Asn, in turn, which confers low-level rifampin resistance on its own, was not shown to be associated with a cost of resistance in vitro. The restriction to distinct mutations that confer rifampin resistance in vivo, as demonstrated here, appears to be determined by the Darwinian fitness of the organisms.


Molecular Microbiology | 2003

Molecular analysis of fusidic acid resistance in Staphylococcus aureus

Silke Besier; Albrecht Ludwig; Volker Brade; Thomas A. Wichelhaus

Fusidic acid is a potent antibiotic against severe Gram‐positive infections that interferes with the function of elongation factor G (EF‐G), thereby leading to the inhibition of bacterial protein synthesis. In this study, we demonstrate that fusidic acid resistance in Staphylococcus aureus results from point mutations within the chromosomal fusA gene encoding EF‐G. Sequence analysis of fusA revealed mutational changes that cause amino acid substitutions in 10 fusidic acid‐resistant clinical S. aureus strains as well as in 10 fusidic acid‐resistant S. aureus mutants isolated under fusidic acid selective pressure in vitro. Fourteen different amino acid exchanges were identified that were restricted to 13 amino acid residues within EF‐G. To confirm the importance of observed amino acid exchanges in EF‐G for the generation of fusidic acid resistance in S. aureus, three mutant fusA alleles encoding EF‐G derivatives with the exchanges P406L, H457Y and L461K were constructed by site‐directed mutagenesis. In each case, introduction of the mutant fusA alleles on plasmids into the fusidic acid‐susceptible S. aureus strain RN4220 caused a fusidic acid‐resistant phenotype. The elevated minimal inhibitory concentrations of fusidic acid determined for the recombinant bacteria were analogous to those observed for the fusidic acid‐resistant clinical S. aureus isolates and the in vitro mutants containing the same chromosomal mutations. Thus, the data presented provide evidence for the crucial importance of individual amino acid exchanges within EF‐G for the generation of fusidic acid resistance in S. aureus.


Molecular Genetics and Genomics | 1991

Mutations affecting pore formation by haemolysin from Escherichia coli

Albrecht Ludwig; Angela Schmid; Roland Benz; Werner Goebel

SummaryBy introduction of site-specific deletions, three regions in HlyA were identified, which appear to be involved in pore formation by Escherichia coli haemolysin. Deletion of amino acids 9–37 at the N-terminus led to a haemolysin which had an almost threefold higher specific activity than wild-type and formed pores in an artificial asolectin lipid bilayer with a much longer lifetime than those produced by wild-type haemolysin. The three hydrophobic regions (DI–DIII) located between amino acids 238–410 contributed to pore formation to different extents. Deletion of DI led to a mutant haemolysin which was only slightly active on erythrocyte membranes and increased conductivity of asolectin bilayers without forming defined pores. Deletions in the two other hydrophobic regions (DII and DIII) completely abolished the pore-forming activity of the mutant haemolysin. The only polar amino acid in DI, Asp, was shown to be essential for pore formation. Removal of this residue led to a haemolysin with a considerably reduced capacity to form pores, while replacement of Asp by Glu or Asn had little effect on pore formation. A deletion mutant which retained all three hydrophobic domains but had lost amino acids 498–830 was entirely inactive in pore formation, whereas a shorter deletion from amino acids 670–830 led to a mutant haemolysin which formed abnormal minipores. The conductivity of these pores was drastically reduced compared to pores introduced into an asolectin bilayer by wild-type haemolysin. Based on these data and structural predictions, a model for the pore-forming structure of E. coli haemolysin is proposed.


Journal of Bacteriology | 2004

Molecular Analysis of Cytolysin A (ClyA) in Pathogenic Escherichia coli Strains

Albrecht Ludwig; Christine von Rhein; Susanne Bauer; Christian Hüttinger; Werner Goebel

Cytolysin A (ClyA) of Escherichia coli is a pore-forming hemolytic protein encoded by the clyA (hlyE, sheA) gene that was first identified in E. coli K-12. In this study we examined various clinical E. coli isolates with regard to the presence and integrity of clyA. PCR and DNA sequence analyses demonstrated that 19 of 23 tested Shiga toxin-producing E. coli (STEC) strains, all 7 tested enteroinvasive E. coli (EIEC) strains, 6 of 8 enteroaggregative E. coli (EAEC) strains, and 4 of 7 tested enterotoxigenic E. coli (ETEC) strains possess a complete clyA gene. The remaining STEC, EAEC, and ETEC strains and 9 of the 17 tested enteropathogenic E. coli (EPEC) strains were shown to harbor mutant clyA derivatives containing 1-bp frameshift mutations that cause premature termination of the coding sequence. The other eight EPEC strains and all tested uropathogenic and new-born meningitis-associated E. coli strains (n = 14 and 3, respectively) carried only nonfunctional clyA fragments due to the deletion of two sequences of 493 bp and 204 or 217 bp at the clyA locus. Expression of clyA from clinical E. coli isolates proved to be positively controlled by the transcriptional regulator SlyA. Several tested E. coli strains harboring a functional clyA gene produced basal amounts of ClyA when grown under standard laboratory conditions, but most of them showed a clyA-dependent hemolytic phenotype only when SlyA was overexpressed. The presented data indicate that cytolysin A can play a role only for some of the pathogenic E. coli strains.


International Journal of Medical Microbiology | 2009

ClyA cytolysin from Salmonella: distribution within the genus, regulation of expression by SlyA, and pore-forming characteristics.

Christine von Rhein; Susanne Bauer; Enrique Javier López Sanjurjo; Roland Benz; Werner Goebel; Albrecht Ludwig

Functional homologs of the Escherichia coli cytolysin A (clyA, hlyE, sheA) gene have recently been detected in Salmonella enterica serovars Typhi (S. Typhi) and Paratyphi A (S. Paratyphi A). In this study, analysis of a collection of Salmonella strains showed that all S. Typhi and S. Paratyphi A strains tested harbor an intact copy of the corresponding clyA variant, i.e. clyA(STy) and clyA(SPaA), respectively. On the other hand, clyA proved to be absent in the S. enterica serovar Paratyphi B and serovar Paratyphi C strains, in various non-typhoid S. enterica subsp. enterica serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, and Gallinarum), and in S. enterica subsp. arizonae and Salmonella bongori strains. When grown under normal laboratory conditions, the S. Typhi and S. Paratyphi A strains produced only basal amounts of ClyA protein and did not exhibit a clyA-dependent hemolytic phenotype. RT-PCR and immunoblot analyses as well as phenotypic data revealed, however, that the expression of clyA(STy) and clyA(SPaA) can be activated by the Salmonella transcription factor SlyA. In addition, osmotic protection assays and lipid bilayer experiments demonstrated that the hemolytic ClyA(STy) and ClyA(SPaA) proteins are effective pore-forming toxins which, similar to E. coli ClyA, generate large, stable, moderately cation-selective channels in target membranes. Taken together with our recent serological findings which have indicated that S. Typhi and S. Paratyphi A strains produce substantial amounts of ClyA during human infection, these data suggest that ClyA may play a role in S. Typhi and S. Paratyphi A pathogenesis.

Collaboration


Dive into the Albrecht Ludwig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Benz

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Brade

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Silke Besier

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elke Maier

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge