Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albrecht Sigler is active.

Publication


Featured researches published by Albrecht Sigler.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming

Frederique Varoqueaux; Albrecht Sigler; Jeong-Seop Rhee; Nils Brose; Carsten Enk; Kerstin Reim; Christian Rosenmund

Synaptic vesicles must be primed to fusion competence before they can fuse with the plasma membrane in response to increased intracellular Ca2+ levels. The presynaptic active zone protein Munc13-1 is essential for priming of glutamatergic synaptic vesicles in hippocampal neurons. However, a small subpopulation of synapses in any given glutamatergic nerve cell as well as all γ-aminobutyratergic (GABAergic) synapses are largely independent of Munc13-1. We show here that Munc13-2, the only Munc13 isoform coexpressed with Munc13-1 in hippocampus, is responsible for vesicle priming in Munc13-1 independent hippocampal synapses. Neurons lacking both Munc13-1 and Munc13-2 show neither evoked nor spontaneous release events, yet form normal numbers of synapses with typical ultrastructural features. Thus, the two Munc13 isoforms are completely redundant in GABAergic cells whereas glutamatergic neurons form two types of synapses, one of which is solely Munc13-1 dependent and lacks Munc13-2 whereas the other type employs Munc13-2 as priming factor. We conclude that Munc13-mediated vesicle priming is not a transmitter specific phenomenon but rather a general and essential feature of multiple fast neurotransmitter systems, and that synaptogenesis during development is not dependent on synaptic secretory activity.


Neuron | 2002

Differential control of vesicle priming and short-term plasticity by Munc13 isoforms

Christian Rosenmund; Albrecht Sigler; Iris Augustin; Kerstin Reim; Nils Brose; Jeong-Seop Rhee

Presynaptic short-term plasticity is an important adaptive mechanism regulating synaptic transmitter release at varying action potential frequencies. However, the underlying molecular mechanisms are unknown. We examined genetically defined and functionally unique axonal subpopulations of synapses in excitatory hippocampal neurons that utilize either Munc13-1 or Munc13-2 as synaptic vesicle priming factor. In contrast to Munc13-1-dependent synapses, Munc13-2-driven synapses show pronounced and transient augmentation of synaptic amplitudes following high-frequency stimulation. This augmentation is caused by a Ca(2+)-dependent increase in release probability and releasable vesicle pool size, and requires phospholipase C activity. Thus, differential expression of Munc13 isoforms at individual synapses represents a general mechanism that controls short-term plasticity and contributes to the heterogeneity of synaptic information coding.


Neuron | 2003

Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon.

Wilko D. Altrock; Susanne tom Dieck; Maxim Sokolov; Alexander C. Meyer; Albrecht Sigler; Cord Brakebusch; Reinhard Fässler; Karin Richter; Tobias M. Boeckers; Heidrun Potschka; Claudia Brandt; Wolfgang Löscher; Dörte Grimberg; Thomas Dresbach; Anne Hempelmann; Hadir Hassan; Detlef Balschun; Julietta U. Frey; Johann Helmut Brandstätter; Craig C. Garner; Christian Rosenmund; Eckart D. Gundelfinger

Mutant mice lacking the central region of the presynaptic active zone protein Bassoon were generated to establish the role of this protein in the assembly and function of active zones as sites of synaptic vesicle docking and fusion. Our data show that the loss of Bassoon causes a reduction in normal synaptic transmission, which can be attributed to the inactivation of a significant fraction of glutamatergic synapses. At these synapses, vesicles are clustered and docked in normal numbers but are unable to fuse. Phenotypically, the loss of Bassoon causes spontaneous epileptic seizures. These data show that Bassoon is not essential for synapse formation but plays an essential role in the regulated neurotransmitter release from a subset of glutamatergic synapses.


Cell | 2007

CAPS-1 and CAPS-2 Are Essential Synaptic Vesicle Priming Proteins

Wolf J. Jockusch; Dina Speidel; Albrecht Sigler; Jakob B. Sørensen; Frederique Varoqueaux; Jeong-Seop Rhee; Nils Brose

Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice

Albrecht Sigler; Majid H. Mohajerani; Timothy H. Murphy

Evidence suggests that recovery from stroke damage results from the production of new synaptic pathways within surviving brain regions over weeks. To address whether brain function might redistribute more rapidly through preexisting pathways, we examined patterns of sensory-evoked depolarization in mouse somatosensory cortex within hours after targeted stroke to a subset of the forelimb sensory map. Brain activity was mapped with voltage-sensitive dye imaging allowing millisecond time resolution over 9 mm2 of brain. Before targeted stroke, we report rapid activation of the forelimb area within 10 ms of contralateral forelimb stimulation and more delayed activation of related areas of cortex such as the hindlimb sensory and motor cortices. After stroke to a subset of the forelimb somatosensory cortex map, function was lost in ischemic areas within the forelimb map center, but maintained in regions 200–500 μm from blood flow deficits indicating the size of a perfused, but nonfunctional, penumbra. In many cases, stroke led to only partial loss of the forelimb map, indicating that a subset of a somatosensory domain can function on its own. Within the forelimb map spared by stroke, forelimb-stimulated responses became delayed in kinetics, and their center of activity shifted into adjacent hindlimb and posterior-lateral sensory areas. We conclude that the focus of forelimb-specific somatosensory cortex activity can be rapidly redistributed after ischemic damage. Given that redistribution occurs within an hour, the effect is likely to involve surviving accessory pathways and could potentially contribute to rapid behavioral compensation or direct future circuit rewiring.


Journal of Neuroscience Methods | 2008

Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope

Albrecht Sigler; Alexander Goroshkov; Timothy H. Murphy

Investigators have begun to probe the role of individual surface arterioles in maintaining both the structure and function of cortical regions using vessel-specific clotting by in vivo photothrombosis after craniotomy in mice. To induce targeted strokes we describe a simple adaptation of a commercial upright Olympus BX51WI microscope, permitting light from a 532 nm laser to be directed into the back aperture of a high numerical aperture fluorescence objective. The system involves using a filter slot available on an Olympus BX series microscope to direct a collimated laser beam through the normal epifluorescence path to the objective back aperture resulting in focused photoactivation, with lateral and axial dimensions less than 3 and 5 microm, respectively. Existing fluorescence filters and dichroic mirrors are employed permitting one to safely target the green laser beam and view the clotting process based as red epifluorescence, either through the eye pieces or using a CCD camera. Interruption in blood flow can be confirmed using laser speckle microscopy. The positioning of the photothrombotic laser in this manner does not impede subsequent analysis of brain microcirculation using two-photon microscopy or other imaging methods. It is conceivable that this modification and laser system can also be used for other scenarios where targeted photoactivation or photobleaching would be required.


Stroke | 2010

In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke.

Albrecht Sigler; Timothy H. Murphy

The recent application of 2-photon microscopy to biological specimens has allowed investigators to examine individual synapses within live animals. The gain in resolution over conventional in vivo imaging techniques has been several orders of magnitude. We outline steps for the preparation and maintenance of animals for 2-photon microscopy of fine brain structure. We discuss the in vivo resolution of the method and the ability to image blood flow and synaptic structure in vivo. Applications of in vivo 2-photon microscopy include the study of synapse turnover in adult animals under normal conditions and during pathology such as stroke. In the case of stroke, 2-photon imaging has revealed marked swelling of dendrites and loss of spines within minutes of ischemic onset. Surprisingly, restoration of blood flow during reperfusion was associated with a return of relatively normal structure. Over longer time scales, 2-photon imaging revealed elevated rates of synaptogenesis within peri-infarct tissues recovering from stroke. These results provide an example of how high-resolution in vivo microscopy can be used to provide insight into both the acute pathology and recovery from stroke damage.


Neuron | 2017

Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release

Albrecht Sigler; Won Chan Oh; Cordelia Imig; Bekir Altas; Hiroshi Kawabe; Benjamin H. Cooper; Hyung-Bae Kwon; Jeong-Seop Rhee; Nils Brose

Summary Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.


Acta Histochemica | 2009

A novel method for processing resin-embedded specimens with metal implants for immunohistochemical labelling

Thomas Quentin; Andrea Poppe; Karin Bär; Albrecht Sigler; R Foth; Ina Michel-Behnke; Thomas Paul; Matthias Sigler

A major technical problem in the processing of resin-embedded tissues is the adhesion of the tissue sample on glass slides for immunohistochemical labelling. We therefore established a novel protocol for processing such specimens with improved attachment of the tissue sample during resin removal (deplastification). In order to demonstrate the feasibility of the procedure we employed a panel of smooth muscle cell maturation markers. The technique makes use of a silicone glue (Elastosil E41; Wacker Chemie, München, Germany) to attach the tissue samples to the glass slides. This allows resin dissolution in xylene/2-methoxyethylacetate without detachment of the sample from the slide. Our results demonstrate successful immunohistochemical labelling with primary antibodies directed against: smooth muscle actin, smooth muscle myosin, h-caldesmon, desmin, vimentin and von Willebrand factor. In conclusion, we have established a new and successful method for resin-embedded sample adhesion on glass slides. The developed protocol is feasible for investigation of cells which are involved in intimal proliferation following stent implantation.


eLife | 2017

Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons

Silvia Ripamonti; Mateusz Cyryl Ambrozkiewicz; Francesca Guzzi; Marta Gravati; Gerardo Biella; Ingo Bormuth; Matthieu Hammer; Liam P Tuffy; Albrecht Sigler; Hiroshi Kawabe; Katsuhiko Nishimori; Mauro Toselli; Nils Brose; Marco Parenti; Jeong-Seop Rhee

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances. DOI: http://dx.doi.org/10.7554/eLife.22466.001

Collaboration


Dive into the Albrecht Sigler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy H. Murphy

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Poppe

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Anne Hempelmann

Leibniz Institute for Neurobiology

View shared research outputs
Researchain Logo
Decentralizing Knowledge