Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alcmène Chalazonitis is active.

Publication


Featured researches published by Alcmène Chalazonitis.


Nature Neuroscience | 2007

Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons

Makiko Nagai; Diane B. Re; Tetsuya Nagata; Alcmène Chalazonitis; Thomas M. Jessell; Hynek Wichterle; Serge Przedborski

Mutations in superoxide dismutase-1 (SOD1) cause a form of the fatal paralytic disorder amyotrophic lateral sclerosis (ALS), presumably by a combination of cell-autonomous and non–cell-autonomous processes. Here, we show that expression of mutated human SOD1 in primary mouse spinal motor neurons does not provoke motor neuron degeneration. Conversely, rodent astrocytes expressing mutated SOD1 kill spinal primary and embryonic mouse stem cell–derived motor neurons. This is triggered by soluble toxic factor(s) through a Bax-dependent mechanism. However, mutant astrocytes do not cause the death of spinal GABAergic or dorsal root ganglion neurons or of embryonic stem cell–derived interneurons. In contrast to astrocytes, fibroblasts, microglia, cortical neurons and myocytes expressing mutated SOD1 do not cause overt neurotoxicity. These findings indicate that astrocytes may play a role in the specific degeneration of spinal motor neurons in ALS. Identification of the astrocyte-derived soluble factor(s) may have far-reaching implications for ALS from both a pathogenic and therapeutic standpoint.


The Journal of Neuroscience | 2004

Bone Morphogenetic Protein-2 and -4 Limit the Number of Enteric Neurons But Promote Development of a TrkC-Expressing Neurotrophin-3-Dependent Subset

Alcmène Chalazonitis; Fabien D'Autréaux; Udayan Guha; Tuan D. Pham; Christophe Faure; Jason Chen; Daniel Roman; Lixin Kan; Taube P. Rothman; John A. Kessler; Michael D. Gershon

The hypothesis that BMPs (bone morphogenetic proteins), which act early in gut morphogenesis, also regulate specification and differentiation in the developing enteric nervous system (ENS) was tested. Expression of BMP-2 and BMP-4, BMPR-IA (BMP receptor subunit), BMPR-IB, and BMPR-II, and the BMP antagonists, noggin, gremlin, chordin, and follistatin was found when neurons first appear in the primordial bowel at embryonic day 12 (E12). Agonists, receptors, and antagonists were detected in separated populations of neural crest- and noncrest-derived cells. When applied to immunopurified E12 ENS precursors, BMP-2 and BMP-4 induced nuclear translocation of phosphorylated Smad-1 (Sma and Mad-related protein). The number of neurons developing from these cells was increased by low concentrations and decreased by high concentrations of BMP-2 or BMP-4. BMPs induced the precocious appearance of TrkC-expressing neurons and their dependence on neurotrophin-3 for survival. BMP-4 interacted with glial cell line-derived neurotrophic factor (GDNF) to enhance neuronal development but limited GDNF-driven expansion of the precursor pool. BMPs also promoted development of smooth muscle from mesenchymal cells immunopurified at E12. To determine the physiological significance of these observations, the BMP antagonist noggin was overexpressed in the developing ENS of transgenic mice under the control of the neuron-specific enolase promoter. Neuronal numbers in both enteric plexuses and smooth muscle were increased throughout the postnatal small intestine. These increases were already apparent by E18. In contrast, TrkC-expressing neurons decreased in both plexuses of postnatal noggin-overexpressing animals, again an effect detectable at E18. BMP-2 and/or BMP-4 thus limit the size of the ENS but promote the development of specific subsets of enteric neurons, including those that express TrkC.


The Journal of Comparative Neurology | 2008

Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: Relationship to timing of cell cycle exit

Alcmène Chalazonitis; Tuan D. Pham; Zhishan Li; Daniel Roman; Udayan Guha; William Gomes; Lixin Kan; John A. Kessler; Michael D. Gershon

The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice overexpressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (γ‐aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene‐related peptide, TrkC). The numbers of TH‐ and TrkC‐expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH‐ and TrkC‐expressing neurons developing in vitro from immunoselected enteric crest‐derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT‐3‐dependent neurons. The developmental defects in the ENS of noggin‐overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development. J. Comp. Neurol. 509:474–492, 2008.


Journal of Neurobiology | 1997

The ?1 subunit of laminin-1 promotes the development of neurons by interacting with LBP110 expressed by neural crest-derived cells immunoselected from the fetal mouse gut

Alcmène Chalazonitis; Virginia M. Tennyson; Maura C. Kibbey; Taube P. Rothman; Michael D. Gershon

A plasmalemmal protein, LBP110, which binds to the alpha1 chain of laminin-1, is acquired by the neural crest-derived precursors of enteric neurons after they colonize the gut. We tested the hypothesis that laminin-1 interacts with LBP110 to promote enteric neuronal development. The effects of laminin-1 on neuronal development were studied in cultures of cells immunoselected from fetal mouse gut (E14-15) with antibodies to LBP110 or p75NTR, a marker for enteric crest-derived cells. No matter which antibody was used, the development of cells expressing neuronal markers was increased three- to fourfold by culturing the cells on a laminin-1-containing substrate. To determine whether this effect of laminin-1 is due to the selective adherence of a neurocompetent subset of precursors, immunoselected cells were permitted to preadhere to poly-D-lysine. Addition of soluble laminin-1 24 h later promoted neuronal but not glial development. The laminin-1-induced increment in neuronal development was abolished both by a peptide containing the sequence of the LBP110-binding domain, IKVAV, and by antibodies to laminin alpha1 that recognize the IKVAV domain. Neither reagent affected the total number of cells. In contrast, the response to laminin-1 was not affected by control peptides, preimmune sera, or antibodies to laminin beta1. Laminin-1 transiently induced the expression of nuclear Fos immunoreactivity; this action was blocked specifically by the IKVAV peptide. These data are consistent with the hypothesis that LBP110 interacts with the IKVAV domain of laminin alpha1 to promote the differentiation of neurons from enteric crest-derived precursors.


Developmental Biology | 1998

Promotion of the development of enteric neurons and glia by neuropoietic cytokines: Interactions with neurotrophin-3

Alcmène Chalazonitis; Taube P. Rothman; Jingxian Chen; Emily N. Vinson; A. John MacLennan; Michael D. Gershon

Neurotrophin-3 (NT-3) is known to promote enteric neuronal and glial development. Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) were investigated to test the hypothesis that the development of subsets of enteric neurons and/or glia is also affected by a neuropoietic cytokine, by itself, or together with NT-3. Crest-derived cells, immunoselected from the fetal rat gut (E14) with antibodies to p75NTR, were found by RT-PCR and immunocytochemistry (after culture) to express both alpha (CNTER alpha) and beta components (gp130 and LIFR beta) of the tripartite CNTF receptor. In situ, myenteric ganglia below the esophagus were CNTFR alpha-immunoreactive by E16-E18. In vitro, CNTF and LIF induced in crest-derived cells nuclear translocation of STAT3 (signal transducer and activator of transcription 3), a concentration-dependent increase in expression of neuronal or glial markers, and a decrease in expression of the precursor marker, nestin. LIFR beta was expressed by more cells than CNTFR alpha; therefore, although the factors were equipotent, the maximal effect of LIF > CNTF. The cytokines and NT-3 were additive in promoting neuronal but not glial development. Specifically, the development of neurons expressing NADPH-diaphorase activity (an early marker found in inhibitory motor neurons) was promoted by CNTF and NT-3. These observations support the idea that a ligand for the tripartite CNTF receptor complex plays a role in ENS development.


Gastroenterology | 2011

Enteric Neuronal Density Contributes to the Severity of Intestinal Inflammation

Kara Gross Margolis; Korey Stevanovic; Nima Karamooz; Zi Shan Li; Ankur Ahuja; Fabien D'Autréaux; Virginia Saurman; Alcmène Chalazonitis; Michael D. Gershon

BACKGROUND & AIMS Enteric neurons have been reported to be increased in inflamed regions of the bowel in patients with inflammatory bowel disease or intestinal neurogangliomatosis. It is impossible to determine whether this hyperinnervation predates intestinal inflammation, results from it, or contributes to its severity in humans, so we studied this process in mice. METHODS To determine whether the density of enteric neurons determines the severity of inflammation, we studied transgenic mice that have greater than normal (NSE-noggin mice, which overexpress noggin under the control of the neuron-specific enolase promoter) or fewer than normal (Hand2(+/-) mice) numbers of neurons in the enteric nervous system. Colitis was induced with trinitrobenzene sulfonic acid or dextran sulfate sodium, and the intensity of the resulting inflammation in Hand2(+/-) and NSE-noggin mice was compared with that of wild-type littermates. RESULTS Severity of each form of colitis (based on survival, symptom, and histologic scores; intestinal expression of genes that encode proinflammatory molecules; and levels of neutrophil elastase and p50 nuclear factor κB) were significantly reduced in Hand2(+/-) mice and significantly increased in NSE-noggin animals. Neither mouse differed from wild-type in the severity of delayed-type hypersensitivity (edema, T-cell and neutrophil infiltration, or expression of interleukin-1β, interferon-γ, or tumor necrosis factor-α) induced in the ears using 2,4-dinitro-1-fluorobenzene. Transgene effects on inflammation were therefore restricted to the gastrointestinal tract. CONCLUSIONS The severity of intestinal inflammation is associated with the density of the enteric innervation in mice. Abnormalities in development of the enteric nervous system might therefore contribute to the pathogenesis of inflammatory bowel disease.


Progress in Brain Research | 2004

Neurotrophin-3 in the development of the enteric nervous system

Alcmène Chalazonitis

To date, the only neurotrophin that has been shown to influence the development of the enteric nervous system (ENS) is neurotrophin-3 (NT-3). NT-3 plays an essential role in the development of both the neural-crest-derived peripheral nervous system and the central nervous system (i.e., Chalazonitis, 1996, Mol. Neurobiol., 12: 39-53; Sieber-Blum, 1999, Neurotrophins and the Neural Crest, CRC Press, Boca Raton). This review integrates data obtained from our laboratory and from our collaboration with other investigators that demonstrate a late-acting role for NT-3 in the development of enteric neurons in vitro and in vivo. Studies of the biological actions of NT-3 on enteric neuronal precursors in vitro demonstrate that NT-3 acts directly on the precursor cells and that it also acts in combination with other neurotrophic factors such as glial cell line-derived neurotrophic factor and a ciliary neurotrophic factor-like molecule, to promote the survival and differentiation of enteric neurons and glia. Importantly, bone morphogenetic protein-2 (BMP-2) and BMP-4, members of the transforming growth factor-beta (TGF-beta) superfamily, regulate the onset of action of NT-3 during fetal gut development. Analyzes performed on mice deficient in the genes encoding NT-3 or its transducing tyrosine kinase receptor, TrkC, and conversely on transgenic mice that overexpress NT-3 substantiate a physiological role for NT-3 in the development and maintenance of a subset of enteric neurons. There is loss of neurons in both the myenteric and submucosal plexuses of mice lacking NT-3/TrkC signaling and selective hyperplasia in the myenteric plexus of mice overexpressing NT-3. Analyzes performed on transgenic mice that overexpress noggin, a specific BMP-4 antagonist, show significant decreases in the density of TrkC-expressing neurons but significant increase in overall neuronal density of both plexuses. Conversely, overexpression of BMP-4 is sufficient to produce, an increase in the proportion of TrkC-expressing neurons in both plexuses. Overall, our data point to a regulatory role of BMP-4 in the responses of subsets of myenteric and submucosal neurons to NT-3. NT-3 is required for the differentiation, maintenance and proper physiological function of late-developing enteric neurons that are important for the control of gut peristalsis.


Developmental Dynamics | 2007

Gangliogenesis in the enteric nervous system: Roles of the polysialylation of the neural cell adhesion molecule and its regulation by bone morphogenetic protein‐4

Christophe Faure; Alcmène Chalazonitis; Catherine Rhéaume; Guylaine Bouchard; S.-Gopalan Sampathkumar; Kevin J. Yarema; Michael D. Gershon

The neural crest–derived cells that colonize the fetal bowel become patterned into two ganglionated plexuses. The hypothesis that bone morphogenetic proteins (BMPs) promote ganglionation by regulating neural cell adhesion molecule (NCAM) polysialylation was tested. Transcripts encoding the sialyltransferases, ST8Sia IV (PST) and ST8Sia II (STX), which polysialylate NCAM, were detectable in fetal rat gut by E12 but were downregulated postnatally. PSA‐NCAM‐immunoreactive neuron numbers, but not those of NCAM, were developmentally regulated similarly. Circular smooth muscle was transiently (E16–20) PSA‐NCAM‐immunoreactive when it is traversed by migrating precursors of submucosal neurons. Neurons developing in vitro from crest‐derived cells immunoselected at E12 with antibodies to p75NTR expressed NCAM and PSA‐NCAM. BMP‐4 promoted neuronal NCAM polysialylation and clustering. N‐butanoylmannosamine, which blocks NCAM polysialylation, but not N‐propanoylmannosamine, which does not, interfered with BMP‐4‐induced neuronal clustering. Observations suggest that BMP signaling enhances NCAM polysialylation, which allows precursors to migrate and form ganglionic aggregates during the remodeling of the developing ENS. Developmental Dynamics 236:44–59, 2007.


Developmental Biology | 2011

Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling.

Alcmène Chalazonitis; Fabien D'Autréaux; Tuan D. Pham; John A. Kessler; Michael D. Gershon

The neural crest-derived cell population that colonizes the bowel (ENCDC) contains proliferating neural/glial progenitors. We tested the hypothesis that bone morphogenetic proteins (BMPs 2 and 4), which are known to promote enteric neuronal differentiation at the expense of proliferation, function similarly in gliogenesis. Enteric gliogenesis was analyzed in mice that overexpress the BMP antagonist, noggin, or BMP4 in the primordial ENS. Noggin-induced loss-of-function decreased, while BMP4-induced gain-of-function increased the glial density and glia/neuron ratio. When added to immunoisolated ENCDC, BMPs provoked nuclear translocation of phosphorylated SMAD proteins and enhanced both glial differentiation and expression of the neuregulin receptor ErbB3. ErbB3 transcripts were detected in E12 rat gut, before glial markers are expressed; moreover, expression of the ErbB3 ligand, glial growth factor 2 (GGF2) escalated rapidly after its first detection at E14. ErbB3-immunoreactive cells were located in the ENS of fetal and adult mice. GGF2 stimulated gliogenesis and proliferation and inhibited glial cell derived neurotrophic factor (GDNF)-promoted neurogenesis. Enhanced glial apoptosis occurred following GGF2 withdrawal; BMPs intensified this GGF2-dependence and reduced GGF2-stimulated proliferation. These observations support the hypotheses that BMPs are required for enteric gliogenesis and act by promoting responsiveness of ENCDC to ErbB3 ligands such as GGF2.


Molecular Neurobiology | 1996

Neurotrophin-3 as an essential signal for the developing nervous system

Alcmène Chalazonitis

Rapid advances in characterization of the biological actions mediated by the third member of the neurotrophin family, neurotrophin-3 (NT-3), have been made recently in vitro as well asin situ. These have been made possible by the cloning of the genes for NT-3 and for its transducing receptor tyrosine kinase TrkC. This article will focus on the roles of NT-3 in the nervous system.In situ localization of NT-3 consistent with that of its receptor is manifested at all developmental stages studied and into adulthood. Through TrkC, NT-3 signals a number of trophic effects, ranging from mitogenesis, promotion of survival, or differentiation, depending on the developmental stage of the target cells. The sites of action of NT-3 reside primarily in the peripheral nervous system (PNS), various areas of the central nervous system (CNS), and in the enteric nervous system (ENS). Analyses of the phenotypes of transgenic mice lacking NT-3 or injection of embryos with a blocking antibody have so far revealed the essential role of NT-3 in development of specific populations of the PNS, and in particular of proprioceptive, nodose, and auditory sensory neurons and of sympathetic neurons. The actions of NT-3 also extend to modulation of transmitter release at several types of synapses in the periphery as well as in the adult CNS. In addition, NT-3 may play a role in the development of tissues other than the nervous system, such as the cardiovascular system. Future investigations will widen the understanding of the many roles of NT-3 on both neuronal and nonneuronal cells.

Collaboration


Dive into the Alcmène Chalazonitis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy A. Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge