Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aldis P. Weible is active.

Publication


Featured researches published by Aldis P. Weible.


Behavioral Neuroscience | 2000

Cortical involvement in acquisition and extinction of trace eyeblink conditioning

Aldis P. Weible; Matthew D. McEchron; John F. Disterhoft

Previous studies have implicated 2 cortical regions interconnected with the hippocampal formation, the retrosplenial cortex (RSC) and the medial prefrontal cortex (mPFC), as loci important for the acquisition of hippocampally dependent trace eyeblink conditioning. These loci have also been proposed to serve as long-term storage sites of task critical information. This study used lesions made prior to training to investigate the roles of the RSC, as well as the caudal and rostral subdivisions of the mPFC, in the acquisition and subsequent extinction of trace eyeblink conditioning in the rabbit. The caudal mPFC and rostral mPFC were shown to be critical for acquisition and extinction of the conditioned reflex, respectively. The data indicate that the RSC is not critical for acquisition or extinction of the trace conditioned reflex.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The BK-mediated fAHP is modulated by learning a hippocampus-dependent task.

Elizabeth A. Matthews; Aldis P. Weible; Samit N Shah; John F. Disterhoft

Intrinsic excitability is a plastic property of cells that, along with synaptic changes, can be modulated by learning. Action potential (AP) height, width, and frequency are intrinsically controlled properties which rely on the activation of Na+, Ca2+, and K+ channels in the dendritic, somatic, and axonal membranes. The fast after-hyperpolarization (fAHP) after an AP is partially responsible for determining the half-width and duration of the AP and thus Ca2+ influx during the depolarization. In CA1 hippocampal pyramidal cells, the fAHP is carried by the voltage- and Ca2+-dependent BK channel. In addition to modulating the duration of the AP, the BK-mediated potassium current exerts control over the frequency of AP generation in response to a depolarizing input. These facts position BK-mediated effects to not only modulate immediate intraneuronal communication, but also to control longer-term Ca2+-dependent changes in the neuron, such as kinase activation, gene transcription, and synaptic plasticity. We examined how the BK-mediated fAHP was altered in hippocampal neurons after learning trace eyeblink conditioning. By using current clamp methods, it was found that the fAHP is reduced and the AP duration is increased in cells from conditioned animals. Additionally, in vitro and in vivo measures of firing frequency show that BK-channel blockade increases both evoked (in vitro) and spontaneous (in vivo) firing frequency of CA1 neurons, implicating the BK channel in the control of intrinsic excitability. These data indicate that the reduction of the BK-mediated fAHP is an essential part of the total increase of neuronal excitability known to accompany hippocampus-dependent learning.


The Journal of Neuroscience | 2013

Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons

David C. Rowland; Aldis P. Weible; Ian R. Wickersham; Haiyan Wu; Mark Mayford; Menno P. Witter; Clifford G. Kentros

The enormous potential of modern molecular neuroanatomical tools lies in their ability to determine the precise connectivity of the neuronal cell types comprising the innate circuitry of the brain. We used transgenically targeted viral tracing to identify the monosynaptic inputs to the projection neurons of layer II of medial entorhinal cortex (MEC-LII) in mice. These neurons are not only major inputs to the hippocampus, the structure most clearly implicated in learning and memory, they also are “grid cells.” Here we address the question of what kinds of inputs are specifically targeting these MEC-LII cells. Cell-specific infection of MEC-LII with recombinant rabies virus results in unambiguous labeling of monosynaptic inputs. Furthermore, ratios of labeled neurons in different regions are largely consistent between animals, suggesting that label reflects density of innervation. While the results mostly confirm prior anatomical work, they also reveal a novel major direct input to MEC-LII from hippocampal pyramidal neurons. Interestingly, the vast majority of these direct hippocampal inputs arise not from the major hippocampal subfields of CA1 and CA3, but from area CA2, a region that has historically been thought to merely be a transitional zone between CA3 and CA1. We confirmed this unexpected result using conventional tracing techniques in both rats and mice.


The Journal of Neuroscience | 2012

Neural Correlates of Long-Term Object Memory in the Mouse Anterior Cingulate Cortex

Aldis P. Weible; David C. Rowland; Caitlin K. Monaghan; Nicholas T. Wolfgang; Clifford G. Kentros

Damage to the hippocampal formation results in a profound temporally graded retrograde amnesia, implying that it is necessary for memory acquisition but not its long-term storage. It is therefore thought that memories are transferred from the hippocampus to the cortex for long-term storage in a process called systems consolidation (Dudai and Morris, 2000). Where in the cortex this occurs remains an open question. Recent work (Frankland et al., 2005; Vetere et al., 2011) suggests the anterior cingulate cortex (ACC) as a likely candidate area, but there is little direct electrophysiological evidence to support this claim. Previously, we demonstrated object-associated firing correlates in caudal ACC during tests of recognition memory and described evidence of neuronal responses to where an object had been following a brief delay. However, long-term memory requires evidence of more durable representations. Here we examined the activity of ACC neurons while testing for long-term memory of an absent object. Mice explored two objects in an arena and then were returned 6 h later with one of the objects removed. Mice continued to explore where the object had been, demonstrating memory for that object. Remarkably, some ACC neurons continued to respond where the object had been, while others developed new responses in the absent objects location. The incidence of absent-object responses by ACC neurons was greatly increased with increased familiarization to the objects, and such responses were still evident 1 month later. These data strongly suggest that the ACC contains neural correlates of consolidated object/place association memory.


Journal of Neurophysiology | 2009

Neural Correlates of Novel Object and Novel Location Recognition Behavior in the Mouse Anterior Cingulate Cortex

Aldis P. Weible; David C. Rowland; Raina Pang; Clifford G. Kentros

The anterior cingulate cortex (ACC) is a component of the limbic system implicated in a wide variety of functions spanning motor and sensory information processing, memory, attention, novelty detection, and comparisons of expectation versus outcome. It remains unclear how much of this functional diversity stems from differences in methodology or interpretation versus truly reflecting the range of processes in which the ACC is involved. In the present study, ACC neuronal activity was examined in freely behaving mice (C57BL6/J) under conditions allowing investigation of many of the cited functions in conditions free from externally applied rules: tests of novel object and novel location recognition memory. Behavioral activity and neuronal activity were recorded first in the open field, during the initial exposure and subsequent familiarization to two identical objects, and finally during the recognition memory tests. No discernible stable firing correlates of ACC neurons were found in the open field, but the addition of objects led to lasting changes in the firing patterns of many ACC neurons around one or both of the object locations. During the novel location test, some neurons followed the familiar object to its new location, others fired exclusively where the object had been, and yet others fired to both current and former object locations. Many of these same features were observed during tests of object recognition memory. However, the magnitude of the neuronal preference for the novel or the familiar object was markedly greater than that observed during either the tests of location recognition or novel object preferences in animals that did not exhibit the expected behavior. The present study reveals, for the first time, single-neuron correlates of object and location recognition behaviors in the rodent ACC and suggests that neurons of the ACC provide a distributed representation of all of the salient features of a task.


The Journal of Neuroscience | 2006

Vibrissa-signaled eyeblink conditioning induces somatosensory cortical plasticity

Roberto Galvez; Craig Weiss; Aldis P. Weible; John F. Disterhoft

Whisker deflection conditioned stimuli (CS) were demonstrated to activate physiologically and anatomically defined barrels in the contralateral somatosensory cortex and to support trace–eyeblink conditioned responses when paired with corneal airpuff unconditioned stimuli in rabbits. Analysis of cytochrome-oxidase-stained somatosensory whisker-associated cortical barrels revealed a row-specific expansion of the conditioned compared with the nontrained hemisphere. This expansion was not evident in pseudo-conditioned rabbits, suggesting that this expansion of conditioned cortical barrels in response to a hippocampal- and forebrain-dependent learning task (trace conditioning) is associative rather than activity dependent. Using whisker stimulation as a CS in the well studied eyeblink conditioning paradigm will facilitate characterizing sensory cortical involvement in controlling and modulating an associatively learned response at the neural systems and cellular level.


Neuroscience | 2006

Comparisons of dorsal and ventral hippocampus cornu ammonis region 1 pyramidal neuron activity during trace eye-blink conditioning in the rabbit.

Aldis P. Weible; O'Reilly Ja; Craig Weiss; John F. Disterhoft

Previous studies demonstrating a critical role of the hippocampus during trace eye-blink conditioning have focused primarily upon the dorsal portion of the structure. However, evidence suggests that a functional differentiation exists along the septotemporal axis of the hippocampus. In the present study, the activity of 2588 single cornu ammonis region 1 pyramidal neurons of the dorsal hippocampus and ventral hippocampus were recorded during trace and pseudo-eye-blink conditioning of the rabbit. Learning-related increases in dorsal hippocampus neuron firing rates were observed immediately prior to behavioral criterion, and increased over the course of training. Activation of dorsal hippocampus neurons during trace conditioning was also greater than that of ventral hippocampus neurons, including during the trace interval, in well-trained animals. An unexpected difference in the patterns of learning-related activity between hemispheres was also observed. Neurons of the dorsal hippocampus ipsilateral and contralateral to the trained eye, exhibiting significant increases in firing rate [rate increasing neurons], demonstrated the greatest magnitude of activation early and late in training, respectively. Rate increasing neurons of the dorsal hippocampus also exhibited a greater diversity of response profiles, with 69% of dorsal hippocampus rate increasing neurons exhibiting significant increases in firing rate during the conditioned stimulus and/or trace intervals, compared with only 8% of ventral hippocampus rate increasing neurons (the remainder of which were significantly responsive during only the unconditioned stimulus and/or post-unconditioned stimulus intervals). Only modest learning-related activation of ventral hippocampus neurons was observed, reflected as an increase in conditioning stimulus-elicited rate increasing neuron response magnitudes over the course of training. No differences in firing rate between dorsal hippocampus and ventral hippocampus neurons during a 1-day pre-training habituation session were observed. Thus, dorsal hippocampus activation is more robust, suggesting a more substantial role for these neurons in the processing of temporal information during trace eye-blink conditioning.


Neuroscience | 2007

Connections of the caudal anterior cingulate cortex in rabbit: Neural circuitry participating in the acquisition of trace eyeblink conditioning

Aldis P. Weible; Craig Weiss; John F. Disterhoft

The caudal anterior cingulate cortex (cAC) is an essential component of the circuitry involved in acquisition of forebrain-dependent trace eyeblink conditioning. Lesions of the cAC prevent trace eyeblink conditioning [Weible AP, McEchron MD, Disterhoft JF (2000) Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci 114(6):1058-1067]. The patterns of activation of cAC neurons recorded in vivo suggest an attentional role for this structure early in training [Weible AP, Weiss C, Disterhoft JF (2003) Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol 90(2):599-612]. The goal of the present study was to identify connections of the portion of the rabbit cAC previously demonstrated to be involved in trace eyeblink conditioning, using the neuronal tract tracer wheat germ agglutinin conjugated to horseradish peroxidase, to better understand how the cAC contributes to the process of associative learning. Reciprocal connections with the claustrum provide a route for the transfer of sensory information between the cAC and neocortical and allocortical regions also involved in learning. Connections with components of the basal forebrain cholinergic system are described, with relevance to the proposed attentional role of the cAC. Reciprocal and unidirectional connections were in evidence in multiple thalamic regions, including the medial dorsal nucleus, which have been implicated in a variety of conditioning paradigms. Anterograde connections with the caudate and lateral pontine nuclei provide access to forebrain motor and brainstem sensory circuitry, respectively. The relevance of these connections to acquisition of the trace conditioned reflex is discussed.


The Journal of Neuroscience | 2010

Transgenic Targeting of Recombinant Rabies Virus Reveals Monosynaptic Connectivity of Specific Neurons

Aldis P. Weible; Leslie Schwarcz; Ian R. Wickersham; Leah DeBlander; Haiyan Wu; Edward M. Callaway; H. Sebastian Seung; Clifford G. Kentros

Understanding how neural circuits work requires a detailed knowledge of cellular-level connectivity. Our current understanding of neural circuitry is limited by the constraints of existing tools for transsynaptic tracing. Some of the most intractable problems are a lack of cellular specificity of uptake, transport across multiple synaptic steps conflating direct and indirect inputs, and poor labeling of minor inputs. We used a novel combination of transgenic mouse technology and a recently developed tracing system based on rabies virus (Wickersham et al., 2007a,b) to overcome all three constraints. Because the virus requires transgene expression for both initial infection and subsequent retrograde transsynaptic infection, we created several lines of mice that express these genes in defined cell types using the tetracycline-dependent transactivator system (Mansuy and Bujard, 2000). Fluorescent labeling from viral replication is thereby restricted to defined neuronal cell types and their direct monosynaptic inputs. Because viral replication does not depend on transgene expression, it provides robust amplification of signal in presynaptic neurons regardless of input strength. We injected virus into transgenic crosses expressing the viral transgenes in specific cell types of the hippocampus formation to demonstrate cell-specific infection and monosynaptic retrograde transport of virus, which strongly labels even minor inputs. Such neuron-specific transgenic complementation of recombinant rabies virus holds great promise for obtaining cellular-resolution wiring diagrams of the mammalian CNS.


Behavioural Brain Research | 2013

Remembering to attend: the anterior cingulate cortex and remote memory.

Aldis P. Weible

Damage to the hippocampus, as first demonstrated with patient HM, results in a profound anterograde and temporally-graded retrograde amnesia. The observation that older memories could still be consciously recollected led to the proposal that, over time, information initially processed in the hippocampus is stored in a distributed cortical network. The anterior cingulate cortex (ACC) has recently been implicated in this process. Studies in rodents have demonstrated that the ACC is necessary for recalling behaviors learned a month or more in the past, but not for the same behaviors learned the previous day. Precisely how the ACC contributes to the recall of remote memories is unknown. Is this role distinct from myriad others proposed for the ACC, or has the approach taken in these studies of assessing function at different points after learning provided a new window through which to view established processes? The present review seeks to address this question. First, the data will be presented implicating the ACC in recall of remote memory. This will be followed by a discussion of studies describing two other primary roles of the ACC, mediating attention and premotor planning, with an emphasis on data collected in rodents, as these will be most directly comparable to the memory studies presented. The available evidence supports a connection among these roles, and suggests a possible synthesis for otherwise seemingly disparate functions reported for the ACC.

Collaboration


Dive into the Aldis P. Weible's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Weiss

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Rowland

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge