Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aldo Galeone is active.

Publication


Featured researches published by Aldo Galeone.


PLOS ONE | 2009

MicroRNA-199b-5p Impairs Cancer Stem Cells through Negative Regulation of HES1 in Medulloblastoma

Livia Garzia; Immacolata Andolfo; Emilio Cusanelli; Natascia Marino; Giuseppe Petrosino; Daniela De Martino; Veronica Esposito; Aldo Galeone; Luigi Navas; Silvia Esposito; Sara Gargiulo; Sarah Fattet; Vittoria Donofrio; Giuseppe Cinalli; Arturo Brunetti; Luigi Del Vecchio; Paul A. Northcott; Olivier Delattre; Michael D. Taylor; Achille Iolascon; Massimo Zollo

Background Through negative regulation of gene expression, microRNAs (miRNAs) can function in cancers as oncosuppressors, and they can show altered expression in various tumor types. Here we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many cell-fate-determining stages. MBs occur bimodally, with the peak incidence seen between 3–4 years and 8–9 years of age, although it can also occur in adults. Notch regulates a subset of the MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulated these phenomena, and can be used in anti-cancer therapies. Methodology/Principal Findings In a screening of MB cell lines, the miRNA miR-199b-5p was seen to be a regulator of the Notch pathway through its targeting of the transcription factor HES1. Down-regulation of HES1 expression by miR-199b-5p negatively regulates the proliferation rate and anchorage-independent growth of MB cells. MiR-199b-5p over-expression blocks expression of several cancer stem-cell genes, impairs the engrafting potential of MB cells in the cerebellum of athymic/nude mice, and of particular interest, decreases the MB stem-cell-like (CD133+) subpopulation of cells. In our analysis of 61 patients with MB, the expression of miR-199b-5p in the non-metastatic cases was significantly higher than in the metastatic cases (P = 0.001). Correlation with survival for these patients with high levels of miR-199b expression showed a positive trend to better overall survival than for the low-expressing patients. These data showing the down-regulation of miR-199b-5p in metastatic MBs suggest a potential silencing mechanism through epigenetic or genetic alterations. Upon induction of de-methylation using 5-aza-deoxycytidine, lower miR-199b-5p expression was seen in a panel of MB cell lines, supported an epigenetic mechanism of regulation. Furthermore, two cell lines (Med8a and UW228) showed significant up-regulation of miR-199b-5p upon treatment. Infection with MB cells in an induced xenograft model in the mouse cerebellum and the use of an adenovirus carrying miR-199b-5p indicate a clinical benefit through this negative influence of miR-199b-5p on tumor growth and on the subset of MB stem-cell-like cells, providing further proof of concept. Conclusions/Significance Despite advances in our understanding of the pathogenesis of MB, one-third of these patients remain incurable and current treatments can significantly damage long-term survivors. Here we show that miR-199b-5p expression correlates with metastasis spread, identifying a new molecular marker for a poor-risk class in patients with MB. We further show that in a xenograft model, MB tumor burden can be reduced, indicating the use of miR199b-5p as an adjuvant therapy after surgery, in combination with radiation and chemotherapy, for the improvement of anti-cancer MB therapies and patient quality of life. To date, this is the first report that expression of a miRNA can deplete the tumor stem cells, indicating an interesting therapeutic approach for the targeting of these cells in brain tumors.


PLOS ONE | 2011

MiR-34a Targeting of Notch Ligand Delta-Like 1 Impairs CD15+/CD133+ Tumor-Propagating Cells and Supports Neural Differentiation in Medulloblastoma

Pasqualino De Antonellis; Chiara Medaglia; Emilio Cusanelli; Immacolata Andolfo; Lucia Liguori; Gennaro De Vita; Marianeve Carotenuto; Annamaria Bello; Fabio Formiggini; Aldo Galeone; Giuseppe De Rosa; Antonella Virgilio; Immacolata Scognamiglio; Manuela Sciro; Giuseppe Basso; Johannes H. Schulte; Giuseppe Cinalli; Achille Iolascon; Massimo Zollo

Background Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies. Methodology/Principal Findings In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133+/CD15+ tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1+/- p53-/-), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo. Conclusions/Significance Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.


Bioorganic & Medicinal Chemistry | 2008

Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucleotide

Teresa Coppola; Michela Varra; Giorgia Oliviero; Aldo Galeone; Giuliana D’Isa; Luciano Mayol; Elena Morelli; Mariarosaria Bucci; Valentina Vellecco; Giuseppe Cirino; Nicola Borbone

A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.


BioMed Research International | 2014

Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma

Immacolata Scognamiglio; Maria Teresa Di Martino; Virginia Campani; Antonella Virgilio; Aldo Galeone; Annamaria Gullà; Maria Eugenia Gallo Cantafio; Gabriella Misso; Pierosandro Tagliaferri; Pierfrancesco Tassone; Michele Caraglia; Giuseppe De Rosa

Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM.


Bioorganic & Medicinal Chemistry Letters | 1992

SOLID-PHASE SYNTHESIS OF 5-HYDROXYMETHYLURACIL CONTAINING DNA

Maria R. Conte; Aldo Galeone; Daina Z. Avizonis; Victor L. Hsu; Luciano Mayol; David R. Kearns

Abstract The synthesis of 3′-O-(diisopropylamino-2-cyanoethoxyphosphinyl)-5′-O-(4,4′-diemthoxytriyl)-5-( tert -butyldimethylsiloxymethyl)-2′-deoxyuridine ( 5 ) and its utilization for the preparation of 5-hydroxymethyluracil (hmU) containing oligodeoxyribonucleotides by means of automated synthesis are described.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis, biophysical and biological studies of trisubstituted naphthalimides as G-quadruplex ligands

Antonella Peduto; Bruno Pagano; Carmen Petronzi; Antonio Massa; Veronica Esposito; Antonella Virgilio; Francesco Paduano; Francesco Trapasso; Filomena Fiorito; Salvatore Florio; Concetta Giancola; Aldo Galeone; Rosanna Filosa

A series of trisubstituted naphthalimides have been synthesized and evaluated as telomeric G-quadruplex ligands by biophysical methods. Affinity for telomeric G-quadruplex AGGG(TTAGGG)(3) binding was first screened by fluorescence titrations. Subsequently, the interaction of the telomeric G-quadruplex with compounds showing the best affinity has been studied by isothermal titration calorimetry and UV-melting experiments. The two best compounds of the series tightly bind the telomeric quadruplex with a 2:1 drug/DNA stoichiometry. These derivatives have been further evaluated for their ability to inhibit telomerase by a TRAP assay and their pharmacological properties by treating melanoma (M14) and human lung cancer (A549) cell lines with increasing drug concentrations. A dose-dependent inhibition of cell proliferation was observed for all cellular lines during short-term treatment.


Chemical Communications | 2010

Tetra-end-linked oligonucleotides forming DNA G-quadruplexes: a new class of aptamers showing anti-HIV activity.

Giorgia Oliviero; Jussara Amato; Nicola Borbone; Stefano D'Errico; Aldo Galeone; Luciano Mayol; Shozeb Haider; Olujide Olubiyi; Bart Hoorelbeke; Jan Balzarini; Gennaro Piccialli

The biophysical and biological properties of unprecedented anti-HIV aptamers are presented. The most active aptamer (1L) shows a significant affinity to the HIV protein gp120.


Nucleosides, Nucleotides & Nucleic Acids | 2002

Interaction of distamycin A and netropsin with quadruplex and duplex structures: a comparative 1H-NMR study.

Antonio Randazzo; Aldo Galeone; Veronica Esposito; Michela Varra; Luciano Mayol

ABSTRACT Homonuclear NMR techniques have been used to investigate the interactions of the minor groove binding agents distamycin A (Dist-A) and the related drug netropsin (Net) with three quadruplexes characterized by different groove widths: [d(TGGGGT)]4 (Q1), [d(GGGGTTTTGGGG)]2 (Q2), and d(GGGGTTGGGGTGTGGGGTTGGGG) (Q3). Netropsin has been found to be in a fast chemical exchange with all three kinds of quadruplexes, whereas Dist-A interacts tightly with Q1 and, at a less extent, with Q2. In order to determine the degree of selectivity of Dist-A for two- rather than four-stranded DNA, we titrated with Dist-A an equimolar solution of Q1 and the duplex d(CGCAAATTTGCG)2 (D). This comparative 1H-NMR study allowed us to conclude that Dist-A and, consequently, Net possess higher affinity for duplex DNA.


Nucleic Acids Research | 2012

The insertion of two 8-methyl-2′-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands

Antonella Virgilio; Veronica Esposito; Giuseppe Citarella; Antonietta Pepe; Luciano Mayol; Aldo Galeone

In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG3T) and d(TG4T) analogues containing two 8-methyl-2′-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5′-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5′- and the 3′-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.


Chemical Communications | 2001

1 H-NMR study of the interaction of distamycin A and netropsin with the parallel stranded tetraplex [d(TGGGGT)]4

Antonio Randazzo; Aldo Galeone; Luciano Mayol

The first 1H-NMR investigation of the reversible interaction of two small minor groove binding molecules with a synthetic tetraplex DNA structure is reported.

Collaboration


Dive into the Aldo Galeone's collaboration.

Top Co-Authors

Avatar

Luciano Mayol

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonella Virgilio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Veronica Esposito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Michela Varra

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gennaro Piccialli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giorgia Oliviero

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Randazzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Petraccone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Nicola Borbone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Concetta Giancola

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge