Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aldo Jongejan is active.

Publication


Featured researches published by Aldo Jongejan.


Nature Immunology | 2016

Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells

Pleun Hombrink; Christina Helbig; Ronald Backer; Berber Piet; Anna E. Oja; Regina Stark; Giso Brasser; Aldo Jongejan; René E. Jonkers; Benjamin Nota; Onur Basak; Hans Clevers; Perry D. Moerland; Derk Amsen; René A. W. van Lier

Tissue-resident memory T cells (TRM cells) in the airways mediate protection against respiratory infection. We characterized TRM cells expressing integrin αE (CD103) that reside within the epithelial barrier of human lungs. These cells had specialized profiles of chemokine receptors and adhesion molecules, consistent with their unique localization. Lung TRM cells were poised for rapid responsiveness by constitutive expression of deployment-ready mRNA encoding effector molecules, but they also expressed many inhibitory regulators, suggestive of programmed restraint. A distinct set of transcription factors was active in CD103+ TRM cells, including Notch. Genetic and pharmacological experiments with mice revealed that Notch activity was required for the maintenance of CD103+ TRM cells. We have thus identified specialized programs underlying the residence, persistence, vigilance and tight control of human lung TRM cells.


Nature Genetics | 2014

Mutations in ZBTB20 cause Primrose syndrome

Viviana Cordeddu; Bert Redeker; Emilia Stellacci; Aldo Jongejan; Alessandra Fragale; Ted E.J. Bradley; Massimiliano Anselmi; Andrea Ciolfi; Serena Cecchetti; Valentina Muto; Laura Bernardini; Meron Azage; Daniel R. Carvalho; Alberto J. Espay; Alison Male; Anna Maja Molin; Renata Posmyk; Carla Battisti; Alberto Casertano; Daniela Melis; Antoine H. C. van Kampen; Frank Baas; Marcel Mannens; Gianfranco Bocchinfuso; Lorenzo Stella; Marco Tartaglia; Raoul C. M. Hennekam

Primrose syndrome and 3q13.31 microdeletion syndrome are clinically related disorders characterized by tall stature, macrocephaly, intellectual disability, disturbed behavior and unusual facial features, with diabetes, deafness, progressive muscle wasting and ectopic calcifications specifically occurring in the former. We report that missense mutations in ZBTB20, residing within the 3q13.31 microdeletion syndrome critical region, underlie Primrose syndrome. This finding establishes a genetic link between these disorders and delineates the impact of ZBTB20 dysregulation on development, growth and metabolism.


Human Molecular Genetics | 2015

CACNA1B mutation is linked to unique myoclonus-dystonia syndrome

Justus L. Groen; Arturo Andrade; Katja Ritz; Hamid Jalalzadeh; Martin A. Haagmans; Ted E.J. Bradley; Aldo Jongejan; Dineke S. Verbeek; Peter Nürnberg; Sylvia Denome; Raoul C. M. Hennekam; Diane Lipscombe; Frank Baas; Marina A. J. Tijssen

Using exome sequencing and linkage analysis in a three-generation family with a unique dominant myoclonus-dystonia-like syndrome with cardiac arrhythmias, we identified a mutation in the CACNA1B gene, coding for neuronal voltage-gated calcium channels CaV2.2. This mutation (c.4166G>A;p.Arg1389His) is a disruptive missense mutation in the outer region of the ion pore. The functional consequences of the identified mutation were studied using whole-cell and single-channel patch recordings. High-resolution analyses at the single-channel level showed that, when open, R1389H CaV2.2 channels carried less current compared with WT channels. Other biophysical channel properties were unaltered in R1389H channels including ion selectivity, voltage-dependent activation or voltage-dependent inactivation. CaV2.2 channels regulate transmitter release at inhibitory and excitatory synapses. Functional changes could be consistent with a gain-of-function causing the observed hyperexcitability characteristic of this unique myoclonus-dystonia-like syndrome associated with cardiac arrhythmias.


Human Molecular Genetics | 2014

Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia

Sander M. Houten; Simone Denis; Heleen te Brinke; Aldo Jongejan; Antoine H. C. van Kampen; Edward J. Bradley; Frank Baas; Raoul C. M. Hennekam; David S. Millington; Sarah P. Young; Dianne M. Frazier; Muge Gucsavas-Calikoglu; Ronald J. A. Wanders

Dienoyl-CoA reductase (DECR) deficiency with hyperlysinemia is a rare disorder affecting the metabolism of polyunsaturated fatty acids and lysine. The molecular basis of this condition is currently unknown. We describe a new case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy suggestive of a mitochondrial disorder. Exome sequencing revealed a causal mutation in NADK2. NADK2 encodes the mitochondrial NAD kinase, which is crucial for NADP biosynthesis evidenced by decreased mitochondrial NADP(H) levels in patient fibroblasts. DECR and also the first step in lysine degradation are performed by NADP-dependent oxidoreductases explaining their in vivo deficiency. DECR activity was also deficient in lysates of patient fibroblasts and could only be rescued by transfecting patient cells with functional NADK2. Thus NADPH is not only crucial as a cosubstrate, but can also act as a molecular chaperone that activates and stabilizes enzymes. In addition to polyunsaturated fatty acid oxidation and lysine degradation, NADPH also plays a role in various other mitochondrial processes. We found decreased oxygen consumption and increased extracellular acidification in patient fibroblasts, which may explain why the disease course is consistent with clinical criteria for a mitochondrial disorder. We conclude that DECR deficiency with hyperlysinemia is caused by mitochondrial NADP(H) deficiency due to a mutation in NADK2.


Nature Genetics | 2017

Neuroblastoma is composed of two super-enhancer-associated differentiation states

Tim van Groningen; Jan Koster; Linda J. Valentijn; Danny A. Zwijnenburg; Nurdan Akogul; Nancy E. Hasselt; Marloes Broekmans; Franciska Haneveld; Natalia E. Nowakowska; Johannes Bras; Carel J. M. van Noesel; Aldo Jongejan; Antoine H. C. van Kampen; Linda Koster; Frank Baas; Lianne van Dijk-Kerkhoven; Margriet Huizer-Smit; Maria C Lecca; Alvin Chan; Arjan Lakeman; Piet Molenaar; Richard Volckmann; Ellen M. Westerhout; Mohamed Hamdi; Peter van Sluis; Marli E. Ebus; Jan J. Molenaar; Godelieve A.M. Tytgat; Bart A. Westerman; Johan van Nes

Neuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown. Here we show that most neuroblastomas include two types of tumor cells with divergent gene expression profiles. Undifferentiated mesenchymal cells and committed adrenergic cells can interconvert and resemble cells from different lineage differentiation stages. ChIP–seq analysis of isogenic pairs of mesenchymal and adrenergic cells identified a distinct super-enhancer landscape and super-enhancer-associated TF network for each cell type. Expression of the mesenchymal TF PRRX1 could reprogram the super-enhancer and mRNA landscapes of adrenergic cells toward a mesenchymal state. Mesenchymal cells were more chemoresistant in vitro and were enriched in post-therapy and relapse tumors. Two super-enhancer-associated TF networks, which probably mediate lineage control in normal development, thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.


Journal of Medical Genetics | 2016

A specific mutation in TBL1XR1 causes Pierpont syndrome

Charlotte A Heinen; Aldo Jongejan; Peter J. Watson; Bert Redeker; Anita Boelen; Olga Boudzovitch-Surovtseva; Francesca Forzano; Roel Hordijk; Richard I. Kelley; Ann Haskins Olney; Mary Ella Pierpont; G. Bradley Schaefer; Fiona Stewart; A. S. Paul van Trotsenburg; Eric Fliers; John W. R. Schwabe; Raoul C. M. Hennekam

Background The combination of developmental delay, facial characteristics, hearing loss and abnormal fat distribution in the distal limbs is known as Pierpont syndrome. The aim of the present study was to detect and study the cause of Pierpont syndrome. Methods We used whole-exome sequencing to analyse four unrelated individuals with Pierpont syndrome, and Sanger sequencing in two other unrelated affected individuals. Expression of mRNA of the wild-type candidate gene was analysed in human postmortem brain specimens, adipose tissue, muscle and liver. Expression of RNA in lymphocytes in patients and controls was additionally analysed. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function. Results We identified a single heterozygous missense variant, c.1337A>C (p.Tyr446Cys), in transducin β-like 1 X-linked receptor 1 (TBL1XR1) as disease-causing in all patients. TBL1XR1 mRNA expression was demonstrated in pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. mRNA expression is lower in lymphocytes of two patients compared with the four controls. The mutant TBL1XR1 protein assembled correctly into the nuclear receptor corepressor (NCoR)/ silencing mediator for retinoid and thyroid receptors (SMRT) complex, suggesting a dominant-negative mechanism. This contrasts with loss-of-function germline TBL1XR1 deletions and other TBL1XR1 mutations that have been implicated in autism. However, autism is not present in individuals with Pierpont syndrome. Conclusions This study identifies a specific TBL1XR1 mutation as the cause of Pierpont syndrome. Deletions and other mutations in TBL1XR1 can cause autism. The marked differences between Pierpont patients with the p.Tyr446Cys mutation and individuals with other mutations and whole gene deletions indicate a specific, but as yet unknown, disease mechanism of the TBL1XR1 p.Tyr446Cys mutation.


Nucleic Acids Research | 2016

Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA

Alex Harwig; Aldo Jongejan; Antoine H. C. van Kampen; Ben Berkhout; Atze T. Das

Evidence is accumulating that retroviruses can produce microRNAs (miRNAs). To prevent cleavage of their RNA genome, retroviruses have to use an alternative RNA source as miRNA precursor. The transacting responsive (TAR) hairpin structure in HIV-1 RNA has been suggested as source for miRNAs, but how these small RNAs are produced without impeding virus replication remained unclear. We used deep sequencing analysis of AGO2-bound HIV-1 RNAs to demonstrate that the 3′ side of the TAR hairpin is processed into a miRNA-like small RNA. This ∼21 nt RNA product is able to repress the expression of mRNAs bearing a complementary target sequence. Analysis of the small RNAs produced by wild-type and mutant HIV-1 variants revealed that non-processive transcription from the HIV-1 LTR promoter results in the production of short TAR RNAs that serve as precursor. These TAR RNAs are cleaved by Dicer and processing is stimulated by the viral Tat protein. This biogenesis pathway differs from the canonical miRNA pathway and allows HIV-1 to produce the TAR-encoded miRNA-like molecule without cleavage of the RNA genome.


Development | 2017

Unraveling transcriptome dynamics in human spermatogenesis

Sabrina Z. Jan; Tinke L. Vormer; Aldo Jongejan; Michael D. Röling; Sherman J. Silber; Dirk G. de Rooij; Geert Hamer; Sjoerd Repping; Ans M.M. van Pelt

Spermatogenesis is a dynamic developmental process that includes stem cell proliferation and differentiation, meiotic cell divisions and extreme chromatin condensation. Although studied in mice, the molecular control of human spermatogenesis is largely unknown. Here, we developed a protocol that enables next-generation sequencing of RNA obtained from pools of 500 individually laser-capture microdissected cells of specific germ cell subtypes from fixed human testis samples. Transcriptomic analyses of these successive germ cell subtypes reveals dynamic transcription of over 4000 genes during human spermatogenesis. At the same time, many of the genes encoding for well-established meiotic and post-meiotic proteins are already present in the pre-meiotic phase. Furthermore, we found significant cell type-specific expression of post-transcriptional regulators, including expression of 110 RNA-binding proteins and 137 long non-coding RNAs, most of them previously not linked to spermatogenesis. Together, these data suggest that the transcriptome of precursor cells already contains the genes necessary for cellular differentiation and that timely translation controlled by post-transcriptional regulators is crucial for normal development. These established transcriptomes provide a reference catalog for further detailed studies on human spermatogenesis and spermatogenic failure. Highlighted Article: Using laser capture microscopy, a comprehensive transcriptomic dataset of well-defined and distinct germ cell subtypes based on morphology and localization in the human testis is generated.


RNA Biology | 2015

Mechanistic insights on the Dicer-independent AGO2-mediated processing of AgoshRNAs.

Ying Poi Liu; Margarete Karg; Alex Harwig; Elena Herrera-Carrillo; Aldo Jongejan; Antoine H. C. van Kampen; Ben Berkhout

Short hairpin RNAs (shRNAs) are widely used for gene knockdown by inducing the RNA interference (RNAi) mechanism, both for research and therapeutic purposes. The shRNA precursor is processed by the RNase III-like enzyme Dicer into biologically active small interfering RNA (siRNA). This effector molecule subsequently targets a complementary mRNA for destruction via the Argonaute 2 (AGO2) complex. The cellular role of Dicer concerns the processing of pre-miRNAs into mature microRNA (miRNA). Recently, a non-canonical pathway was reported for the biogenesis of miR-451, which bypasses Dicer and is processed instead by the slicer activity of AGO2, followed by the regular AGO2-mediated mRNA targeting step. Interestingly, shRNA designs that are characterized by a relatively short basepaired stem also bypass Dicer to be processed by AGO2. We named this design AgoshRNA as these molecules depend on AGO2 both for processing and silencing activity. In this study, we investigated diverse mechanistic aspects of this new class of AgoshRNA molecules. We probed the requirements for AGO2-mediated processing of AgoshRNAs by modification of the proposed cleavage site in the hairpin. We demonstrate by deep sequencing that AGO2-processed AgoshRNAs produce RNA effector molecules with more discrete ends than the products of the regular shRNA design. Furthermore, we tested whether trimming and tailing occurs upon AGO2-mediated processing of AgoshRNAs, similar to what has been described for miR-451. Finally, we tested the prediction that AgoshRNA activity, unlike that of regular shRNAs, is maintained in Dicer-deficient cell types. These mechanistic insights could aid in the design of optimised AgoshRNA tools and therapeutics.


PLOS ONE | 2015

Gene Expression and MicroRNA Expression Analysis in Small Arteries of Spontaneously Hypertensive Rats. Evidence for ER Stress

Teresa Palao; Karl Swärd; Aldo Jongejan; Perry D. Moerland; Judith de Vos; Angela van Weert; Silvia M. Arribas; Gergely Groma; Ed VanBavel; Erik N. T. P. Bakker

Small arteries are known to develop functional and structural alterations in hypertension. However, the mechanisms of this remodeling are not fully understood. We hypothesized that altered gene expression is associated with the development of hypertension in mesenteric arteries of spontaneously hypertensive rats (SHR). Three sublines of SHR and normotensive Wistar Kyoto rats (WKY) were studied at 6 weeks and 5 months of age. MiRNA and mRNA microarray experiments were performed and analyzed with bioinformatical tools, including Ingenuity Pathway Analysis (IPA). Principal component analysis showed a clear separation in both miRNA and mRNA expression levels between both ages studied, demonstrating strong age-related changes in expression. At the miRNA level, IPA identified differences between SHR and WKY related to metabolic diseases, cellular growth, and proliferation. The mRNAs differentially expressed between SHR and WKY were related to metabolism, cellular movement and proliferation. The most strongly upregulated gene (9.2-fold) was thrombospondin 4 (Thbs4), a protein involved in the endoplasmic reticulum (ER) stress response that activates transcription factor 6α (ATF6α). ATF6α downstream targets were also differentially expressed in SHR vs. WKY. Differential expression of THBS4, the cleaved form of ATF6α, and two of its targets were further confirmed at the protein level by western blot. In summary, these data revealed a number of genes (n = 202) and miRNAs (n = 3) in mesenteric arteries of SHR that had not been related to hypertension previously. The most prominent of these, Thbs4, is related to vascular ER stress that is associated with hypertension.

Collaboration


Dive into the Aldo Jongejan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Baas

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Redeker

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Eric Fliers

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Ruud Weijer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Harwig

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge