Aldo Pratelli
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aldo Pratelli.
Journal of the European Mathematical Society | 2009
Andrea Cianchi; Nicola Fusco; Francesco Maggi; Aldo Pratelli
A quantitative version of the sharp Sobolev inequality in W (R), 1 < p < n, is established with a remainder term involving the distance from extremals.
American Journal of Mathematics | 2011
Andrea Cianchi; Nicola Fusco; Francesco Maggi; Aldo Pratelli
<abstract abstract-type=TeX><p>We prove a sharp quantitative version of the isoperimetric inequality in the space
Bulletin of The London Mathematical Society | 2004
L. De Pascale; Lawrence C. Evans; Aldo Pratelli
{Bbb R}^n
Proceedings of the American Mathematical Society | 2009
Francesco Maggi; Aldo Pratelli
endowed with the Gaussian measure.
Journal of the European Mathematical Society | 2011
Nicola Fusco; Aldo Pratelli
We introduce some integration-by-parts methods that improve upon the L p estimates on transport densitites from the recent paper by De Pascale–Pratelli [DP-P].
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2014
Francesco Maggi; Aldo Pratelli
Starting from the quantitative isoperimetric inequality, we prove a sharp quantitative version of the Cheeger inequality.
Zeitschrift für Angewandte Mathematik und Physik | 2013
Lorenzo Brasco; Carlo Nitsch; Aldo Pratelli
In 1938 Herman Auerbach published a paper where he showed a deep connection between the solutions of the Ulam problem of floating bodies and a class of sets studied by Zindler, that are the planar sets whose bisecting chords have all the same length. In the same paper he conjectured that among Zindler sets the one with minimal area, as well as with maximal perimeter, is given by the so-called “Auerbach triangle”. We prove here that his conjecture was true.
Numerische Mathematik | 2011
Paola F. Antonietti; Aldo Pratelli
By elementary geometric arguments, correlation inequalities for radially symmetric probability measures are proved in the plane. Precisely, it is shown that the correlation ratio for pairs of width-decreasing sets is minimized within the class of infinite strips. Since open convex sets which are symmetric with respect to the origin turn out to be width-decreasing sets, Pitt’s Gaussian correlation inequality (the two-dimensional case of the long-standing Gaussian correlation conjecture) is derived as a corollary, and it is in fact extended to a wide class of radially symmetric measures. Résumé. En utilisant des arguments géométriques élémentaires, on démontre des inégalités de corrélation pour des mesures de probabilité à symétrie radiale. Plus précisément on montre que, parmi la famille des ensembles width-decreasing, le ratio de corrélation est minimisé par des bandes. Comme les ouverts convexes symétriques appartiennent à cette famille, on retrouve comme corollaire le résultat de Pitt sur la validité de la conjecture de corrélation gaussiennne en dimension 2, qui est étendue dans ce papier à une large classe de mesures à symétrie radiale.
Inventiones Mathematicae | 2010
Francesco Maggi; Aldo Pratelli
Denoting by
Annals of Mathematics | 2008
Nicola Fusco; Francesco Maggi; Aldo Pratelli