Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aldons J. Lusis is active.

Publication


Featured researches published by Aldons J. Lusis.


Nature | 2011

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Zeneng Wang; Elizabeth Klipfell; Brian J. Bennett; Robert A. Koeth; Bruce S. Levison; Brandon DuGar; Ariel E. Feldstein; Earl B. Britt; Xiaoming Fu; Yoon-Mi Chung; Phil Schauer; Jonathan D. Smith; Hooman Allayee; W.H. Wilson Tang; Joseph A. DiDonato; Aldons J. Lusis; Stanley L. Hazen

Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine—choline, trimethylamine N-oxide (TMAO) and betaine—were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.


Circulation | 1995

Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics.

Judith A. Berliner; Mohamad Navab; Alan M. Fogelman; Joy S. Frank; Linda L. Demer; Peter A. Edwards; Andrew D. Watson; Aldons J. Lusis

The clinical events resulting from atherosclerosis are directly related to the oxidation of lipids in LDLs that become trapped in the extracellular matrix of the subendothelial space. These oxidized lipids activate an NF kappa B-like transcription factor and induce the expression of genes containing NF kappa B binding sites. The protein products of these genes initiate an inflammatory response that initially leads to the development of the fatty streak. The progression of the lesion is associated with the activation of genes that induce arterial calcification, which changes the mechanical characteristics of the artery wall and predisposes to plaque rupture at sites of monocytic infiltration. Plaque rupture exposes the flowing blood to tissue factor in the lesion, and this induces thrombosis, which is the proximate cause of the clinical event. There appear to be potent genetically determined systems for preventing lipid oxidation, inactivating biologically important oxidized lipids, and/or modulating the inflammatory response to oxidized lipids that may explain the differing susceptibility of individuals and populations to the development of atherosclerosis. Enzymes associated with HDL may play an important role in protecting against lipid oxidation in the artery wall and may account in part for the inverse relation between HDL and risk for atherosclerotic clinical events.


Nature | 2003

Genetics of gene expression surveyed in maize, mouse and man

Eric E. Schadt; Stephanie A. Monks; Thomas A. Drake; Aldons J. Lusis; Nam Che; Veronica Colinayo; Thomas G. Ruff; Stephen B. Milligan; John Lamb; Guy Cavet; Peter S. Linsley; Mao Mao; Roland Stoughton; Stephen H. Friend

Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma. One study recently completed the first comprehensive dissection of transcriptional regulation in budding yeast, giving a detailed glimpse of a genome-wide survey of the genetics of gene expression. Unlike classical quantitative traits, which often represent gross clinical measurements that may be far removed from the biological processes giving rise to them, the genetic linkages associated with transcript abundance affords a closer look at cellular biochemical processes. Here we describe comprehensive genetic screens of mouse, plant and human transcriptomes by considering gene expression values as quantitative traits. We identify a gene expression pattern strongly associated with obesity in a murine cross, and observe two distinct obesity subtypes. Furthermore, we find that these obesity subtypes are under the control of different loci.


Nature Medicine | 2013

Intestinal microbiota metabolism of l -carnitine, a nutrient in red meat, promotes atherosclerosis

Robert A. Koeth; Zeneng Wang; Bruce S. Levison; Jennifer A. Buffa; Elin Org; Brendan Sheehy; Earl B. Britt; Xiaoming Fu; Lin Li; Jonathan D. Smith; Joseph A. DiDonato; Jun Chen; Hongzhe Li; Gary D. Wu; James D. Lewis; Manya Warrier; J. Mark Brown; Ronald M. Krauss; W.H. Wilson Tang; Frederic D. Bushman; Aldons J. Lusis; Stanley L. Hazen

Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary l-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of l-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma l-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary l-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.


Nature | 1998

Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis

Diana M. Shih; Lingjie Gu; Yu Rong Xia; Mohamad Navab; Wan Fen Li; Susan Hama; Lawrence W. Castellani; Clement E. Furlong; Lucio G. Costa; Alan M. Fogelman; Aldons J. Lusis

Serum paraoxonase (PON1) is an esterase that is associated with high-density lipoproteins (HDLs) in the plasma; it is involved in the detoxification of organophosphate insecticides such as parathion and chlorpyrifos. PON1 may also confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids present in oxidized low-density lipoproteins (LDLs). To study the role of PON1 in vivo, we created PON1 -knockout mice by gene targeting. Compared with their wild-type littermates, PON1-deficient mice were extremely sensitive to the toxic effects of chlorpyrifos oxon, the activated form of chlorpyrifos, and were more sensitive to chlorpyrifos itself. HDLs isolated from PON1-deficient mice were unable to prevent LDL oxidation in a co-cultured cell model of the artery wall, and both HDLs and LDLs isolated from PON1 -knockout mice were more susceptible to oxidation by co-cultured cells than the lipoproteins from wild-type littermates. When fed on a high-fat, high-cholesterol diet, PON1 -null mice were more susceptible to atherosclerosis than their wild-type littermates.


PLOS Biology | 2008

Mapping the Genetic Architecture of Gene Expression in Human Liver

Eric E. Schadt; Cliona Molony; Eugene Chudin; Ke-Ke Hao; Xia Yang; Pek Yee Lum; Andrew Kasarskis; Bin Zhang; Susanna Wang; Christine Suver; Jun Zhu; Joshua Millstein; Solveig K. Sieberts; John Lamb; Debraj GuhaThakurta; Jonathan Derry; John D. Storey; Iliana Avila-Campillo; Mark Kruger; Jason M. Johnson; Carol A. Rohl; Atila van Nas; Margarete Mehrabian; Thomas A. Drake; Aldons J. Lusis; Ryan Smith; F. Peter Guengerich; Stephen C. Strom; Erin G. Schuetz; Thomas H. Rushmore

Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process.


Nature Genetics | 2005

An integrative genomics approach to infer causal associations between gene expression and disease

Eric E. Schadt; John Lamb; Xia Yang; Jun Zhu; Steve Edwards; Debraj GuhaThakurta; Solveig K. Sieberts; Stephanie A. Monks; Marc L. Reitman; Chunsheng Zhang; Pek Yee Lum; Amy Leonardson; Rolf Thieringer; Joseph M. Metzger; Liming Yang; John Castle; Haoyuan Zhu; Shera F Kash; Thomas A. Drake; Alan B. Sachs; Aldons J. Lusis

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene–perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Synthetic LXR ligand inhibits the development of atherosclerosis in mice

Sean B. Joseph; Elaine McKilligin; Liming Pei; Michael A. Watson; Alan R. Collins; Bryan A. Laffitte; Mingyi Chen; Grace Noh; Joanne Goodman; Graham N. Hagger; Jonathan Tran; Tim K. Tippin; Xuping Wang; Aldons J. Lusis; Willa A. Hsueh; Ronald E. Law; Jon L. Collins; Timothy M. Willson; Peter Tontonoz

The nuclear receptors LXRα and LXRβ have been implicated in the control of cholesterol and fatty acid metabolism in multiple cell types. Activation of these receptors stimulates cholesterol efflux in macrophages, promotes bile acid synthesis in liver, and inhibits intestinal cholesterol absorption, actions that would collectively be expected to reduce atherosclerotic risk. However, synthetic LXR ligands have also been shown to induce lipogenesis and hypertriglyceridemia in mice, raising questions as to the net effects of these compounds on the development of cardiovascular disease. We demonstrate here that the nonsteroidal LXR agonist GW3965 has potent antiatherogenic activity in two different murine models. In LDLR−/− mice, GW3965 reduced lesion area by 53% in males and 34% in females. A similar reduction of 47% was observed in male apoE−/− mice. Long-term (12-week) treatment with LXR agonist had differential effects on plasma lipid profiles in LDLR−/− and apoE−/− mice. GW3965 induced expression of ATP-binding cassettes A1 and G1 in modified low-density lipoprotein-loaded macrophages in vitro as well as in the aortas of hyperlipidemic mice, suggesting that direct actions of LXR ligands on vascular gene expression are likely to contribute to their antiatherogenic effects. These observations provide direct evidence for an atheroprotective effect of LXR agonists and support their further evaluation as potential modulators of human cardiovascular disease.


Nature | 2008

Variations in DNA elucidate molecular networks that cause disease

Yanqing Chen; Jun Zhu; Pek Yee Lum; Xia Yang; Shirly Pinto; Douglas J. MacNeil; Chunsheng Zhang; John Lamb; Stephen Edwards; Solveig K. Sieberts; Amy Leonardson; Lawrence W. Castellini; Susanna Wang; Marie-France Champy; Bin Zhang; Valur Emilsson; Sudheer Doss; Anatole Ghazalpour; Steve Horvath; Thomas A. Drake; Aldons J. Lusis; Eric E. Schadt

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase β (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1996

The Yin and Yang of Oxidation in the Development of the Fatty Streak A Review Based on the 1994 George Lyman Duff Memorial Lecture

Mohamad Navab; Judith A. Berliner; Andrew D. Watson; Susan Hama; Mary C. Territo; Aldons J. Lusis; Diana M. Shih; Brian J. Van Lenten; Joy S. Frank; Linda L. Demer; Peter A. Edwards; Alan M. Fogelman

Recent data support the hypothesis that the fatty streak develops in response to specific phospholipids contained in LDL that become trapped in the artery wall and become oxidized as a result of exposure to the oxidative waste of the artery wall cells. The antioxidants present within both LDL and the microenvironments in which LDL is trapped function to prevent the formation of these biologically active, oxidized lipids. Enzymes associated with LDL and HDL (eg, platelet activating factor acetylhydrolase) or with HDL alone (eg, paraoxonase) destroy these biologically active lipids. The regulation and expression of these enzymes are determined genetically and are also significantly modified by environmental influences, including the acute-phase response or an atherogenic diet. The balance of these multiple factors leads to an induction or suppression of the inflammatory response in the artery wall and determines the clinical course.

Collaboration


Dive into the Aldons J. Lusis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuping Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana M. Shih

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin Pan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge