Alec Sandy
Argonne National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alec Sandy.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Vinodkumar Saranathan; Chinedum O. Osuji; S. G. J. Mochrie; Heeso Noh; Suresh Narayanan; Alec Sandy; Eric R. Dufresne; Richard O. Prum
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
Nature | 2007
Oleg Shpyrko; E. D. Isaacs; Jonathan M. Logan; Yejun Feng; G. Aeppli; R. Jaramillo; Hyekyung Kim; T. F. Rosenbaum; P. Zschack; Michael Sprung; Suresh Narayanan; Alec Sandy
Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a ‘fingerprint’ of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value—consistent with quantum fluctuations—on cooling below 40 K.
Journal of Synchrotron Radiation | 1998
D. L. Abernathy; G. Grübel; S. Brauer; Ian McNulty; G. B. Stephenson; S. G. J. Mochrie; Alec Sandy; N. Mulders; M. Sutton
A simple approach for producing a high-coherent-flux X-ray beam for small-angle-scattering studies used at the Troika beamline of the European Synchrotron Radiation Facility is reported. For such small-angle studies it is permissible to reduce the longitudinal coherence .length of the beam, thus increasing the energy bandpass and intensity of the beam, because there is only a small optical path-length difference. By using mirrors and filters to cut unwanted energies from the undulator harmonic structure, a high-flux beam of >10(9) photons s(-1) through a 5 micron-diameter pinhole at 8.2 keV with a bandpass of 1.3% can be produced. The coherent properties of this beam have been measured by analyzing a static speckle pattern from an aerogel sample imaged by a directly illuminated CCD camera. The speckle size and contrast are compared with the expected values based on a statistical analysis of the intensity distribution of speckle patterns obtained using partially coherent conditions. The expected widths of the spatial autocorrelation are found, but there is an apparent incoherent fraction of the beam which reduces the measured contrast. The method presented is to be used as a tool to optimize conditions for diffraction experiments using coherent X-rays.
Journal of Synchrotron Radiation | 2009
Abdel F. Isakovic; Aaron Stein; J. B. Warren; Suresh Narayanan; Michael Sprung; Alec Sandy; Kenneth Evans-Lutterodt
Motivated by the anticipated advantageous performance of diamond kinoform refractive lenses for synchrotron X-ray radiation studies, this report focuses on progress in designing, nanofabricating and testing of their focusing performance. The method involves using lift-off and plasma etching to reproduce a planar definition of numerically determined kinoform refractive optics. Tests of the focusing action of a diamond kinoform refractive lens at the APS 8-ID-I beamline demonstrate angular control of the focal spot.
Nano Letters | 2015
Vinod Kumar Saranathan; Ainsley Seago; Alec Sandy; Suresh Narayanan; S. G. J. Mochrie; Eric R. Dufresne; Hui Cao; Chinedum O. Osuji; Richard O. Prum
Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ∼127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.
Applied Physics Letters | 2011
Manuel Guizar-Sicairos; Suresh Narayanan; Aaron Stein; Meredith Metzler; Alec Sandy; James R. Fienup; Kenneth Evans-Lutterodt
Measuring the deviation of a wavefront from a sphere provides valuable feedback on lens alignment and manufacturing errors. We demonstrate that these aberrations can be accurately measured at hard x-ray wavelengths, from far-field intensity measurements, using phase retrieval with a moveable structure in the beam path. We induce aberrations on a hard x-ray kinoform lens through deliberate misalignment and show that the reconstructed wavefronts are in good agreement with numerical simulations. Reconstructions from independent data, with the structure at different longitudinal positions and significantly separated from the beam focus, agreed with a root mean squared error of 0.006 waves.
Optics Express | 2010
Manuel Guizar-Sicairos; Kenneth Evans-Lutterodt; Abdel F. Isakovic; Aaron Stein; J. B. Warren; Alec Sandy; Suresh Narayanan; James R. Fienup
We present a technique that allows measuring the field of an x-ray line focus using far-field intensity measurements only. One-dimensional phase retrieval with transverse translation diversity is used to recover a hard x-ray beam focused by a compound kinoform lens. The reconstruction is found to be in good agreement with independent knife-edge scan measurements taken at separated planes. The approach avoids the need for measuring the beam profile at focus and allows narrower beams to be measured than the traditional knife-edge scan.
Physical Review Letters | 2009
Michael S. Pierce; Kee-Chul Chang; Daniel Hennessy; Vladimir Komanicky; Michael Sprung; Alec Sandy; Hoydoo You
We present coherent speckled x-ray diffraction patterns obtained from a monolayer of surface atoms. We measured both the specular anti-Bragg reflection and the off-specular hexagonal reconstruction peak for the Au(001) surface reconstruction. We observed fluctuations of the speckle patterns even when the integrated intensity appears static. By autocorrelating the speckle patterns, we were able to identify two qualitatively different surface dynamic behaviors of the hex reconstruction depending on the sample temperature.
Journal of Applied Crystallography | 2011
Fan Zhang; Andrew J. Allen; Lyle E. Levine; Jan Ilavsky; Gabrielle G. Long; Alec Sandy
This paper describes the development of ultra-small-angle X-ray scattering–X-ray photon correlation spectroscopy (USAXS–XPCS). This technique takes advantage of Bonse–Hart crystal optics and is capable of probing the long-time-scale equilibrium and non-equilibrium dynamics of optically opaque materials with prominent features in a scattering vector range between those of dynamic light scattering and conventional XPCS. Instrumental parameters for optimal coherent-scattering operation are described. Two examples are offered to illustrate the applicability and capability of USAXS–XPCS. The first example concerns the equilibrium dynamics of colloidal dispersions of polystyrene microspheres in glycerol at 10, 15 and 20% volume concentrations. The temporal intensity autocorrelation analysis shows that the relaxation time of the microspheres decays monotonically as the scattering vector increases. The second example concerns the non-equilibrium dynamics of a polymer nanocomposite, for which it is demonstrated that USAXS–XPCS can reveal incipient dynamical changes not observable by other techniques.
Journal of Synchrotron Radiation | 2013
Curt DeCaro; Vidanage Nuwan Karunaratne; Sambhunath Bera; L. B. Lurio; Alec Sandy; Suresh Narayanan; M. Sutton; John Winans; Kirk L. Duffin; Jon Lehuta; Nicholas T. Karonis
The technique of speckle visibility spectroscopy has been employed for the measurement of dynamics using coherent X-ray scattering. It is shown that the X-ray contrast within a single exposure can be related to the relaxation time of the intermediate scattering function, and this methodology is applied to the diffusion of 72 nm-radius latex spheres in glycerol. Data were collected with exposure times as short as 2 ms by employing a resonant shutter. The weak scattering present for short exposures necessitated an analysis formalism based on the spatial correlation function of individual photon charge droplets on an area detector, rather than the usual methods employed for intensity correlations. It is demonstrated that this method gives good agreement between theory and experiment and thus holds promise for extending area-detector-based coherent scattering methods to the study of faster dynamics than previously obtainable.