Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alecia Willis is active.

Publication


Featured researches published by Alecia Willis.


The New England Journal of Medicine | 2013

Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders

Yaping Yang; Donna M. Muzny; Jeffrey G. Reid; Matthew N. Bainbridge; Alecia Willis; Patricia A. Ward; Alicia Braxton; Joke Beuten; Fan Xia; Zhiyv Niu; Matthew T. Hardison; Mir Reza Bekheirnia; Magalie S. Leduc; Amelia Kirby; Peter Pham; Jennifer Scull; Min Wang; Yan Ding; Sharon E. Plon; James R. Lupski; Arthur L. Beaudet; Richard A. Gibbs; Christine M. Eng

BACKGROUND Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders. METHODS We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients. RESULTS We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic phenotypes. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had autosomal recessive disease, and 9 had X-linked disease. A total of 4 probands received two nonoverlapping molecular diagnoses, which potentially challenged the clinical diagnosis that had been made on the basis of history and physical examination. A total of 83% of the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be causative in the same genes and in different genes responsible for genetically heterogeneous disorders. CONCLUSIONS Whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition. (Funded by the National Human Genome Research Institute.).


JAMA | 2014

Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing

Yaping Yang; Donna M. Muzny; Fan Xia; Zhiyv Niu; Richard E. Person; Yan Ding; Patricia A. Ward; Alicia Braxton; Min Wang; Christian Buhay; Narayanan Veeraraghavan; Alicia Hawes; Theodore Chiang; Magalie S. Leduc; Joke Beuten; Jing Zhang; Weimin He; Jennifer Scull; Alecia Willis; Megan L. Landsverk; William J. Craigen; Mir Reza Bekheirnia; Asbjørg Stray-Pedersen; Pengfei Liu; Shu Wen; Wendy Alcaraz; Hong Cui; Magdalena Walkiewicz; Jeffrey G. Reid; Matthew N. Bainbridge

IMPORTANCE Clinical whole-exome sequencing is increasingly used for diagnostic evaluation of patients with suspected genetic disorders. OBJECTIVE To perform clinical whole-exome sequencing and report (1) the rate of molecular diagnosis among phenotypic groups, (2) the spectrum of genetic alterations contributing to disease, and (3) the prevalence of medically actionable incidental findings such as FBN1 mutations causing Marfan syndrome. DESIGN, SETTING, AND PATIENTS Observational study of 2000 consecutive patients with clinical whole-exome sequencing analyzed between June 2012 and August 2014. Whole-exome sequencing tests were performed at a clinical genetics laboratory in the United States. Results were reported by clinical molecular geneticists certified by the American Board of Medical Genetics and Genomics. Tests were ordered by the patients physician. The patients were primarily pediatric (1756 [88%]; mean age, 6 years; 888 females [44%], 1101 males [55%], and 11 fetuses [1% gender unknown]), demonstrating diverse clinical manifestations most often including nervous system dysfunction such as developmental delay. MAIN OUTCOMES AND MEASURES Whole-exome sequencing diagnosis rate overall and by phenotypic category, mode of inheritance, spectrum of genetic events, and reporting of incidental findings. RESULTS A molecular diagnosis was reported for 504 patients (25.2%) with 58% of the diagnostic mutations not previously reported. Molecular diagnosis rates for each phenotypic category were 143/526 (27.2%; 95% CI, 23.5%-31.2%) for the neurological group, 282/1147 (24.6%; 95% CI, 22.1%-27.2%) for the neurological plus other organ systems group, 30/83 (36.1%; 95% CI, 26.1%-47.5%) for the specific neurological group, and 49/244 (20.1%; 95% CI, 15.6%-25.8%) for the nonneurological group. The Mendelian disease patterns of the 527 molecular diagnoses included 280 (53.1%) autosomal dominant, 181 (34.3%) autosomal recessive (including 5 with uniparental disomy), 65 (12.3%) X-linked, and 1 (0.2%) mitochondrial. Of 504 patients with a molecular diagnosis, 23 (4.6%) had blended phenotypes resulting from 2 single gene defects. About 30% of the positive cases harbored mutations in disease genes reported since 2011. There were 95 medically actionable incidental findings in genes unrelated to the phenotype but with immediate implications for management in 92 patients (4.6%), including 59 patients (3%) with mutations in genes recommended for reporting by the American College of Medical Genetics and Genomics. CONCLUSIONS AND RELEVANCE Whole-exome sequencing provided a potential molecular diagnosis for 25% of a large cohort of patients referred for evaluation of suspected genetic conditions, including detection of rare genetic events and new mutations contributing to disease. The yield of whole-exome sequencing may offer advantages over traditional molecular diagnostic approaches in certain patients.


Human Heredity | 2004

Multilocus Analysis of Hypertension: A Hierarchical Approach

Scott M. Williams; Marylyn D. Ritchie; John A. Phillips; Elliot Dawson; Melissa A. Prince; Elvira Dzhura; Alecia Willis; Amma Semenya; Marshall L. Summar; Bill C. White; Jonathan H. Addy; John Kpodonu; Lee-Jun Wong; Robin A. Felder; Pedro A. Jose; Jason H. Moore

While hypertension is a complex disease with a well-documented genetic component, genetic studies often fail to replicate findings. One possibility for such inconsistency is that the underlying genetics of hypertension is not based on single genes of major effect, but on interactions among genes. To test this hypothesis, we studied both single locus and multilocus effects, using a case-control design of subjects from Ghana. Thirteen polymorphisms in eight candidate genes were studied. Each candidate gene has been shown to play a physiological role in blood pressure regulation and affects one of four pathways that modulate blood pressure: vasoconstriction (angiotensinogen, angiotensin converting enzyme – ACE, angiotensin II receptor), nitric oxide (NO) dependent and NO independent vasodilation pathways and sodium balance (G protein-coupled receptor kinase, GRK4). We evaluated single site allelic and genotypic associations, multilocus genotype equilibrium and multilocus genotype associations, using multifactor dimensionality reduction (MDR). For MDR, we performed systematic reanalysis of the data to address the role of various physiological pathways. We found no significant single site associations, but the hypertensive class deviated significantly from genotype equilibrium in more than 25% of all multilocus comparisons (2,162 of 8,178), whereas the normotensive class rarely did (11 of 8,178). The MDR analysis identified a two-locus model including ACE and GRK4 that successfully predicted blood pressure phenotype 70.5% of the time. Thus, our data indicate epistatic interactions play a major role in hypertension susceptibility. Our data also support a model where multiple pathways need to be affected in order to predispose to hypertension.


Human Mutation | 2011

Molecular defects in human carbamoy phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations

Johannes Häberle; Oleg A. Shchelochkov; Jing Wang; Panagiotis Katsonis; Lynn Hall; Sara Reiss; Angela Eeds; Alecia Willis; Meeta Yadav; Samantha Summar; Olivier Lichtarge; Vicente Rubio; Lee-Jun C. Wong; Marshall L. Summar

Deficiency of carbamoyl phosphate synthetase I (CPSI) results in hyperammonemia ranging from neonatally lethal to environmentally induced adult‐onset disease. Over 24 years, analysis of tissue and DNA samples from 205 unrelated individuals diagnosed with CPSI deficiency (CPSID) detected 192 unique CPS1 gene changes, of which 130 are reported here for the first time. Pooled with the already reported mutations, they constitute a total of 222 changes, including 136 missense, 15 nonsense, 50 changes of other types resulting in enzyme truncation, and 21 other changes causing in‐frame alterations. Only ∼10% of the mutations recur in unrelated families, predominantly affecting CpG dinucleotides, further complicating the diagnosis because of the “private” nature of such mutations. Missense changes are unevenly distributed along the gene, highlighting the existence of CPSI regions having greater functional importance than other regions. We exploit the crystal structure of the CPSI allosteric domain to rationalize the effects of mutations affecting it. Comparative modeling is used to create a structural model for the remainder of the enzyme. Missense changes are found to directly correlate, respectively, with the one‐residue evolutionary importance and inversely correlate with solvent accessibility of the mutated residue. This is the first large‐scale report of CPS1 mutations spanning a wide variety of molecular defects highlighting important regions in this protein. Hum Mutat 32:1–11, 2011.


Genetics in Medicine | 2016

Exploring the landscape of pathogenic genetic variation in the ExAC population database: insights of relevance to variant classification.

Wei Song; Sabrina A. Gardner; Hayk Hovhannisyan; Amanda Natalizio; Katelyn S. Weymouth; Wenjie Chen; Ildiko Thibodeau; Ekaterina Bogdanova; Stanley Letovsky; Alecia Willis; Narasimhan Nagan

Purpose:We evaluated the Exome Aggregation Consortium (ExAC) database as a control cohort to classify variants across a diverse set of genes spanning dominant and recessively inherited disorders.Methods:The frequency of pathogenic variants in ExAC was compared with the estimated maximal pathogenic allele frequency (MPAF), based on the disease prevalence, penetrance, inheritance, allelic and locus heterogeneity of each gene. Additionally, the observed carrier frequency and the ethnicity-specific variant distribution were compared between ExAC and the published literature. Results:The carrier frequency and ethnic distribution of pathogenic variants in ExAC were concordant with reported estimates. Of 871 pathogenic/likely pathogenic variants across 19 genes, only 3 exceeded the estimated MPAF. Eighty-four percent of variants with ExAC frequencies above the estimated MPAF were classified as “benign.” Additionally, 20% of the cardiac and 19% of the Lynch syndrome gene variants originally classified as “VUS” occurred with ExAC frequencies above the estimated MPAF, making these suitable for reassessment.Conclusions:The ExAC database is a useful source for variant classification and is not overrepresented for pathogenic variants in the genes evaluated. However, the mutational spectrum, pseudogenes, genetic heterogeneity, and paucity of literature should be considered in deriving meaningful classifications using ExAC.Genet Med 18 8, 850–854.


International Journal of Pediatric Endocrinology | 2011

Early onset obesity and adrenal insufficiency associated with a homozygous POMC mutation

Meenal Mendiratta; Yaping Yang; Andrea E. Balazs; Alecia Willis; Christine M. Eng; Lefkothea P. Karaviti; Lorraine Potocki

Isolated hypocortisolism due to ACTH deficiency is a rare condition that can be caused by homozygous or compound heterozygous mutations in the gene encoding proopiomelanocortin (POMC). Loss of function mutations of POMC gene typically results in adrenal insufficiency, obesity and red hair. We describe an 18 month old Hispanic female with congenital adrenal insufficiency, a novel POMC mutation and atypical clinical features. The patient presented at the age of 9 months with hypoglycemia and the endocrine evaluation resulted in a diagnosis of ACTH deficiency. She developed extreme weight gain prompting sequence analysis of POMC, which revealed a homozygous c.231C > A change which is predicted to result in a premature termination codon. The case we report had obesity, hypocortisolism but lacked red hair which is typical for subjects with POMC mutations. Mutations of POMC should be considered in individuals with severe early onset obesity and adrenal insufficiency even when they lack the typical pigmentary phenotype.


Molecular Cytogenetics | 2012

Deletions in chromosome 6p22.3-p24.3, including ATXN1, are associated with developmental delay and autism spectrum disorders

Patrícia B. S. Celestino-Soper; Cindy Skinner; Richard J. Schroer; Patricia A. Eng; Jayant P. Shenai; Malgorzata M.J. Nowaczyk; Deborah Terespolsky; Donna Cushing; Gayle Patel; Ladonna Immken; Alecia Willis; Joanna Wiszniewska; Reuben Matalon; Jill A. Rosenfeld; Roger E. Stevenson; Sung Hae L Kang; Sau Wai Cheung; Arthur L. Beaudet; Pawel Stankiewicz

Interstitial deletions of the short arm of chromosome 6 are rare and have been associated with developmental delay, hypotonia, congenital anomalies, and dysmorphic features. We used array comparative genomic hybridization in a South Carolina Autism Project (SCAP) cohort of 97 subjects with autism spectrum disorders (ASDs) and identified an ~ 5.4 Mb deletion on chromosome 6p22.3-p23 in a 15-year-old patient with intellectual disability and ASDs. Subsequent database queries revealed five additional individuals with overlapping submicroscopic deletions and presenting with developmental and speech delay, seizures, behavioral abnormalities, heart defects, and dysmorphic features. The deletion found in the SCAP patient harbors ATXN1, DTNBP1, JARID2, and NHLRC1 that we propose may be responsible for ASDs and developmental delay.


Prenatal Diagnosis | 2012

Multiplex ligation‐dependent probe amplification (MLPA) and prenatal diagnosis

Alecia Willis; Ignatia B. Van den Veyver; Christine M. Eng

Multiplex ligation‐dependent probe amplification (MLPA) is a recent technique for the relative quantitation of up to 40 to 45 nucleic acid targets. Due to its relative simplicity, low cost, and availability of laboratory‐developed and more than 300 commercially‐developed assays, MLPA has become more widely used for both research and diagnostic applications. The MLPA platform is now extensively applied for postnatal diagnosis of genetic disorders and has recently been used for prenatal diagnosis. The published uses of MLPA for prenatal diagnosis include detection of aneuploidies, common microdeletion syndromes and subtelomeric copy‐number changes, identification of marker chromosomes, and detection of familial copy‐number changes in single genes. This review describes the technique of MLPA in detail and offers considerations for the interpretation of results in the clinical diagnostic setting.


Human Mutation | 2016

BRCA Share: A Collection of Clinical BRCA Gene Variants

Christophe Béroud; Stanley Letovsky; Corey Braastad; Sandrine M. Caputo; Olivia Beaudoux; Yves Jean Bignon; Brigitte Bressac-de Paillerets; Myriam Bronner; Crystal M Buell; Gwenaëlle Collod-Béroud; Florence Coulet; Nicolas Derive; Christina DiVincenzo; Christopher Elzinga; Céline Garrec; Claude Houdayer; Izabela Karbassi; Sarab Lizard; Angela Love; Danièle Muller; Narasimhan Nagan; Camille R Nery; Ghadi Rai; Françoise Révillion; David Salgado; Nicolas Sevenet; Olga M. Sinilnikova; Hagay Sobol; Dominique Stoppa-Lyonnet; Christine Toulas

As next‐generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world.


Gene | 2012

POLG mutation in a patient with cataracts, early-onset distal muscle weakness and atrophy, ovarian dysgenesis and 3-methylglutaconic aciduria

Mir Reza Bekheirnia; Wei Zhang; Tanya N. Eble; Alecia Willis; Aziz Shaibani; Lee-Jun C. Wong; Fernando Scaglia; Shweta U. Dhar

Mutations in POLG account for one of the most frequent nuclear encoded causes of mitochondrial disorders to date. Individuals harboring POLG mutations exhibit fairly heterogeneous clinical presentations leading to increasing difficulties in classifying these patients into defined clinical phenotypes. This study aims to investigate the molecular basis of a mitochondrial cytopathy in a patient with 3-methylglutaconic aciduria and to expand the clinical phenotype associated with POLG mutations. Clinical, molecular and genetic analyses as well as neurophysiological examinations were carried out for a 23-year-old woman of mixed Caucasian and Latin American ancestry with a history of cataracts diagnosed at age 1 year, she had onset of distal muscle weakness at age 2 years progressing to atrophy and ovarian dysgenesis at puberty. The patient was found to have 3-methylglutaconic acid with normal 3 hydroxyisovaleric acid on urine organic acid analysis. POLG sequencing was done and a heterozygous variant, c.2851T>A (p.Y951N) was found which is predicted to be deleterious. There are limited reports of POLG mutations in individuals with 3-methylglutaconic aciduria. This case report of a young woman with a heterozygous mutation in POLG, presenting with muscle weakness and atrophy at a young age aims to aid clinicians in similar challenging diagnostic situations as well as enhances our understanding of POLG-related disease phenotypes.

Collaboration


Dive into the Alecia Willis's collaboration.

Top Co-Authors

Avatar

Christine M. Eng

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaping Yang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhiyv Niu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alicia Braxton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fan Xia

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

James R. Lupski

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jennifer Scull

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lee-Jun C. Wong

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge