Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandra Gallardo-Godoy is active.

Publication


Featured researches published by Alejandra Gallardo-Godoy.


Journal of Medicinal Chemistry | 2011

2-Aminothiazoles as Therapeutic Leads for Prion Diseases

Alejandra Gallardo-Godoy; Joel R. Gever; Kimberly L. Fife; B. Michael Silber; Stanley B. Prusiner; Adam R. Renslo

2-Aminothiazoles are a new class of small molecules with antiprion activity in prion-infected neuroblastoma cell lines (J. Virol. 2010, 84, 3408). We report here structure-activity studies undertaken to improve the potency and physiochemical properties of 2-aminothiazoles, with a particular emphasis on achieving and sustaining high drug concentrations in the brain. The results of this effort include the generation of informative structure-activity relationships (SAR) and the identification of lead compounds that are orally absorbed and achieve high brain concentrations in animals. The new aminothiazole analogue (5-methylpyridin-2-yl)-[4-(3-phenylisoxazol-5-yl)-thiazol-2-yl]-amine (27), for example, exhibited an EC(50) of 0.94 μM in prion-infected neuroblastoma cells (ScN2a-cl3) and reached a concentration of ∼25 μM in the brains of mice following three days of oral administration in a rodent liquid diet. The studies described herein suggest 2-aminothiazoles as promising new leads in the search for effective therapeutics for prion diseases.


ACS Chemical Biology | 2013

A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels

Sviatoslav N. Bagriantsev; Kean-Hooi Ang; Alejandra Gallardo-Godoy; Kimberly A. Clark; Michelle R. Arkin; Adam R. Renslo; Daniel L. Minor

K2P (KCNK) potassium channels generate “leak” potassium currents that strongly influence cellular excitability and contribute to pain, somatosensation, anesthesia, and mood. Despite their physiological importance, K2Ps lack specific pharmacology. Addressing this issue has been complicated by the challenges that the leak nature of K2P currents poses for electrophysiology-based high-throughput screening strategies. Here, we present a yeast-based high-throughput screening assay that avoids this problem. Using a simple growth-based functional readout, we screened a library of 106,281 small molecules and identified two new inhibitors and three new activators of the mammalian K2P channel K2P2.1 (KCNK2, TREK-1). By combining biophysical, structure–activity, and mechanistic analysis, we developed a dihydroacridine analogue, ML67-33, that acts as a low micromolar, selective activator of temperature- and mechano-sensitive K2P channels. Biophysical studies show that ML67-33 reversibly increases channel currents by activating the extracellular selectivity filter-based C-type gate that forms the core gating apparatus on which a variety of diverse modulatory inputs converge. The new K2P modulators presented here, together with the yeast-based assay, should enable both mechanistic and physiological studies of K2P activity and facilitate the discovery and development of other K2P small molecule modulators.


Journal of Medicinal Chemistry | 2016

Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B

Alejandra Gallardo-Godoy; Craig Muldoon; Bernd Becker; Alysha G. Elliott; Lawrence H. Lash; Johnny X. Huang; Mark S. Butler; Ruby Pelingon; Angela M. Kavanagh; Soumya Ramu; Wanida Phetsang; Mark A. T. Blaskovich; Matthew A. Cooper

The polymyxin lipodecapeptides colistin and polymyxin B have become last resort therapies for infections caused by highly drug-resistant Gram-negative bacteria. Unfortunately, their utility is compromised by significant nephrotoxicity and polymyxin-resistant bacterial strains. We have conducted a systematic activity–toxicity investigation by varying eight of the nine polymyxin amino acid free side chains, preparing over 30 analogues using a novel solid-phase synthetic route. Compounds were tested against a panel of Gram-negative bacteria and counter-screened for in vitro cell toxicity. Promising compounds underwent additional testing against primary kidney cells isolated from human kidneys to better predict their nephrotoxic potential. Many of the new compounds possessed equal or better antimicrobial potency compared to polymyxin B, and some were less toxic than polymyxin B and colistin against mammalian HepG2 cells and human primary kidney cells. These initial structure–activity and structure–toxicity studies set the stage for further improvements to the polymyxin class of antibiotics.


ChemMedChem | 2013

2-Aminothiazoles with Improved Pharmacotherapeutic Properties for Treatment of Prion Disease

Zhe Li; B. Michael Silber; Satish Rao; Joel R. Gever; Clifford Bryant; Alejandra Gallardo-Godoy; Elena Dolghih; Kartika Widjaja; Manuel Elepano; Matthew P. Jacobson; Stanley B. Prusiner; Adam R. Renslo

Recently, we described the aminothiazole lead (4‐biphenyl‐4‐ylthiazol‐2‐yl)‐(6‐methylpyridin‐2‐yl)‐amine (1), which exhibits many desirable properties, including excellent stability in liver microsomes, oral bioavailability of ∼40 %, and high exposure in the brains of mice. Despite its good pharmacokinetic properties, compound 1 exhibited only modest potency in mouse neuroblastoma cells overexpressing the disease‐causing prion protein PrPSc. Accordingly, we sought to identify analogues of 1 with improved antiprion potency in ScN2a‐cl3 cells while retaining similar or superior properties. Herein we report the discovery of improved lead compounds such as (6‐methylpyridin‐2‐yl)‐[4‐(4‐pyridin‐3‐yl‐phenyl)thiazol‐2‐yl]amine and cyclopropanecarboxylic acid (4‐biphenylthiazol‐2‐yl)amide, which exhibit brain exposure/EC50 ratios at least tenfold greater than that of compound 1.


Journal of Biomolecular Screening | 2015

Lead Identification to Clinical Candidate Selection Drugs for Chagas Disease

R. Jeffrey Neitz; Steven Chen; Frantisek Supek; Vince Yeh; Danielle Kellar; Jiri Gut; Clifford Bryant; Alejandra Gallardo-Godoy; Valentina Molteni; Steven L. Roach; Arnab K. Chatterjee; Stephanie A. Robertson; Adam R. Renslo; Michelle R. Arkin; Richard Glynne; James H. McKerrow; Jair L. Siqueira-Neto

Chagas disease affects 8 million people worldwide and remains a main cause of death due to heart failure in Latin America. The number of cases in the United States is now estimated to be 300,000, but there are currently no Food and Drug Administration (FDA)–approved drugs available for patients with Chagas disease. To fill this gap, we have established a public-private partnership between the University of California, San Francisco and the Genomics Institute of the Novartis Research Foundation (GNF) with the goal of delivering clinical candidates to treat Chagas disease. The discovery phase, based on the screening of more than 160,000 compounds from the GNF Academic Collaboration Library, led to the identification of new anti-Chagas scaffolds. Part of the screening campaign used and compared two screening methods, including a colorimetric-based assay using Trypanosoma cruzi expressing β-galactosidase and an image-based, high-content screening (HCS) assay using the CA-I/72 strain of T. cruzi. Comparing molecules tested in both assays, we found that ergosterol biosynthesis inhibitors had greater potency in the colorimetric assay than in the HCS assay. Both assays were used to inform structure-activity relationships for antiparasitic efficacy and pharmacokinetics. A new anti–T. cruzi scaffold derived from xanthine was identified, and we describe its development as lead series.


Journal of Pharmacology and Experimental Therapeutics | 2015

Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains

Kurt Giles; David B. Berry; Carlo Condello; Ronald C. Hawley; Alejandra Gallardo-Godoy; Clifford Bryant; Abby Oehler; Manuel Elepano; Sumita Bhardwaj; Smita Patel; B. Michael Silber; Shenheng Guan; Stephen J. DeArmond; Adam R. Renslo; Stanley B. Prusiner

Because no drug exists that halts or even slows any neurodegenerative disease, developing effective therapeutics for any prion disorder is urgent. We recently reported two compounds (IND24 and IND81) with the 2-aminothiazole (2-AMT) chemical scaffold that almost doubled the incubation times in scrapie prion-infected, wild-type (wt) FVB mice when given in a liquid diet. Remarkably, oral prophylactic treatment with IND24 beginning 14 days prior to intracerebral prion inoculation extended survival from ∼120 days to over 450 days. In addition to IND24, we evaluated the pharmacokinetics and efficacy of five additional 2-AMTs; one was not followed further because its brain penetration was poor. Of the remaining four new 2-AMTs, IND114338 doubled and IND125 tripled the incubation times of RML-inoculated wt and Tg4053 mice overexpressing wt mouse prion protein (PrP), respectively. Neuropathological examination of the brains from untreated controls showed a widespread deposition of self-propagating, β-sheet-rich “scrapie” isoform (PrPSc) prions accompanied by a profound astrocytic gliosis. In contrast, mice treated with 2-AMTs had lower levels of PrPSc and associated astrocytic gliosis, with each compound resulting in a distinct pattern of deposition. Notably, IND125 prevented both PrPSc accumulation and astrocytic gliosis in the cerebrum. Progressive central nervous system dysfunction in the IND125-treated mice was presumably due to the PrPSc that accumulated in their brainstems. Disappointingly, none of the four new 2-AMTs prolonged the lives of mice expressing a chimeric human/mouse PrP transgene inoculated with Creutzfeldt-Jakob disease prions.


Journal of Medicinal Chemistry | 2011

Probing the steric space at the floor of the D1 dopamine receptor orthosteric binding domain: 7α-, 7β-, 8α-, and 8β-methyl substituted dihydrexidine analogues

Juan Pablo Cueva; Alejandra Gallardo-Godoy; Jose I. Juncosa; Pierre A. Vidi; Markus A. Lill; Val J. Watts; David E. Nichols

To probe the space at the floor of the orthosteric ligand binding site in the dopamine D(1) receptor, four methylated analogues of dihydrexidine (DHX) were synthesized with substitutions at the 7 and 8 positions. The 8α-axial, 8β-equatorial, and 7α-equatorial were synthesized by photochemical cyclization of appropriately substituted N-benzoyl enamines, and the 7β-axial analogue was prepared by an intramolecular Henry reaction. All of the methylated analogues displayed losses in affinity when compared to DHX (20 nM): 8β-Me(ax)-DHX (270 nM), 8α-Me(eq)-DHX (920 nM), 7β-Me(eq)-DHX (6540 nM), and 7α-Me(ax)-DHX (>10000 nM). Molecular modeling studies suggest that although the disruption of an aromatic interaction between Phe203(5.47) and Phe288(6.51) is the cause for the 14-fold loss in affinity associated with 8β-axial substitution, unfavorable steric interactions with Ser107(3.36) result in the more dramatic decreases in binding affinity suffered by the rest of the analogues.


Bioorganic & Medicinal Chemistry | 2013

Antiprion compounds that reduce PrPSc levels in dividing and stationary-phase cells

B. Michael Silber; Joel R. Gever; Zhe Li; Alejandra Gallardo-Godoy; Adam R. Renslo; Kartika Widjaja; John J. Irwin; Satish Rao; Matthew P. Jacobson; Sina Ghaemmaghami; Stanley B. Prusiner

During prion diseases, a normally benign, host protein, denoted PrP(C), undergoes alternative folding into the aberrant isoform, PrP(Sc). We used ELISA to identify and confirm hits in order to develop leads that reduce PrP(Sc) in prion-infected dividing and stationary-phase mouse neuroblastoma (ScN2a-cl3) cells. We tested 52,830 diverse small molecules in dividing cells and 49,430 in stationary-phase cells. This led to 3100 HTS and 970 single point confirmed (SPC) hits in dividing cells, 331 HTS and 55 confirmed SPC hits in stationary-phase cells as well as 36 confirmed SPC hits active in both. Fourteen chemical leads were identified from confirmed SPC hits in dividing cells and three in stationary-phase cells. From more than 682 compounds tested in concentration-effect relationships in dividing cells to determine potency (EC50), 102 had EC50 values between 1 and 10 μM and 50 had EC50 values of <1 μM; none affected cell viability. We observed an excellent correlation between EC50 values determined by ELISA and Western immunoblotting for 28 representative compounds in dividing cells (R(2)=0.75; p <0.0001). Of the 55 confirmed SPC hits in stationary-phase cells, 23 were piperazine, indole, or urea leads. The EC50 values of one indole in stationary-phase and dividing ScN2a-cl3 cells were 7.5 and 1.6 μM, respectively. Unexpectedly, the number of hits in stationary-phase cells was ~10% of that in dividing cells. The explanation for this difference remains to be determined.


Bioorganic & Medicinal Chemistry Letters | 2017

Synthesis of octapeptin C4 and biological profiling against NDM-1 and polymyxin-resistant bacteria

Bernd Becker; Mark S. Butler; Karl A. Hansford; Alejandra Gallardo-Godoy; Alysha G. Elliott; Johnny X. Huang; David Edwards; Mark A. T. Blaskovich; Matthew A. Cooper

The first synthesis of octapeptin C4 was achieved using a combination of solid phase synthesis and off-resin cyclisation. Octapeptin C4 displayed antibiotic activity against multi-drug resistant, NDM-1 and polymyxin-resistant Gram-negative bacteria, with moderate activity against Staphylococcus aureus. The linear analogue of octapeptin C4 was also prepared, which showed reduced activity.


ACS Chemical Neuroscience | 2018

Protein and Chemical Determinants of BL-1249 Action and Selectivity for K2P Channels

Lianne Pope; Cristina Arrigoni; Hubing Lou; Clifford Bryant; Alejandra Gallardo-Godoy; Adam R. Renslo; Daniel L. Minor

K2P potassium channels generate leak currents that stabilize the resting membrane potential of excitable cells. Various K2P channels are implicated in pain, ischemia, depression, migraine, and anesthetic responses, making this family an attractive target for small molecule modulator development efforts. BL-1249, a compound from the fenamate class of nonsteroidal anti-inflammatory drugs is known to activate K2P2.1(TREK-1), the founding member of the thermo- and mechanosensitive TREK subfamily; however, its mechanism of action and effects on other K2P channels are not well-defined. Here, we demonstrate that BL-1249 extracellular application activates all TREK subfamily members but has no effect on other K2P subfamilies. Patch clamp experiments demonstrate that, similar to the diverse range of other chemical and physical TREK subfamily gating cues, BL-1249 stimulates the selectivity filter “C-type” gate that controls K2P function. BL-1249 displays selectivity among the TREK subfamily, activating K2P2.1(TREK-1) and K2P10.1(TREK-2) ∼10-fold more potently than K2P4.1(TRAAK). Investigation of mutants and K2P2.1(TREK-1)/K2P4.1(TRAAK) chimeras highlight the key roles of the C-terminal tail in BL-1249 action and identify the M2/M3 transmembrane helix interface as a key site of BL-1249 selectivity. Synthesis and characterization of a set of BL-1249 analogs demonstrates that both the tetrazole and opposing tetralin moieties are critical for function, whereas the conformational mobility between the two ring systems impacts selectivity. Together, our findings underscore the landscape of modes by which small molecules can affect K2P channels and provide crucial information for the development of better and more selective K2P modulators of the TREK subfamily.

Collaboration


Dive into the Alejandra Gallardo-Godoy's collaboration.

Top Co-Authors

Avatar

Adam R. Renslo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel R. Gever

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhe Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt Giles

University of California

View shared research outputs
Top Co-Authors

Avatar

Manuel Elepano

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge