Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandra Moenne is active.

Publication


Featured researches published by Alejandra Moenne.


Marine Drugs | 2011

Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

Jeannette Vera; Jorge Castro; Alberto González; Alejandra Moenne

Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.


Plant Physiology | 2012

Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess

Alberto González; M. de los Ángeles Cabrera; M. Josefa Henríquez; Rodrigo A. Contreras; Bernardo Morales; Alejandra Moenne

To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases.


Aquatic Toxicology | 2009

Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae)

Loretto Contreras; Daniella Mella; Alejandra Moenne; Juan A. Correa

In order to help explain the absence of the brown kelp Lessonia nigrescens from a coastal environment chronically enriched with copper, we characterized the biochemical responses induced by copper stress in this kelp and compared them with those displayed by the copper tolerant brown alga Scytosiphon lomentaria. These algae were cultivated with increasing concentrations of copper (20, 40 and 100microgL(-1)) for 96h and the temporal production of hydrogen peroxide, superoxide anions and lipoperoxides as well as the activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GP), ascorbate peroxidase (AP), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and the activity of the defense enzyme lipoxygenase (LOX) were determined. In L. nigrescens and S. lomentaria, a single peak of hydrogen peroxide was detected, with similar maxima after 3h of copper exposure, although in L. nigrescens buffering took longer. Superoxide anions, on the other hand, were only detected in L. nigrescens. The production of lipoperoxides in L. nigrescens increased steadily at higher copper levels, in a pattern clearly different to their rapid stabilization in S. lomentaria. We suggest that the accumulation of lipoperoxides might be related to LOX, whose activity also increases with exposure time. Furthermore, activities of the antioxidant enzymes CAT, GP, AP and DHAR were lower in L. nigrescens than in S. lomentaria, and GP and DHAR were completely inhibited at higher copper concentrations. Since these enzymes also detoxify fatty acid hydroperoxides, their inhibition, together with the activation of LOX, may explain the persistent and copper-dependent levels of lipoperoxides in L. nigrescens. Based on terrestrial plant models demonstrating toxic effects of lipoperoxides, and on our results on organellar ultrastructural changes, we suggest that copper toxicity induced an uncontrolled lipoperoxide accumulation which may lead to cell damage and dysfunction in L. nigrescens, explaining at least partially, the absence of this kelp in a copper-enriched coastal environment.


Journal of Applied Phycology | 1999

Copper, copper mine tailings and their effect on marine algae in Northern Chile

Juan A. Correa; Juan Carlos Castilla; Marco A. Ramírez; Manuel Varas; Nelson A. Lagos; Sofia Vergara; Alejandra Moenne; Domingo Román; Murray T. Brown

Results are presented of a long-term research programme on the effect of copper contamination on biota in Chilean coastal waters. In spite of the magnitude of the copper mining tailings that affected Caleta Palito and surroundings in northern Chile, the effects on the intertidal assemblages remain restricted to a small geographic area. Even within the affected area, the effects are not homogeneous and there is evidence of active recovery in biological diversity in recent few years. Experimental evidence suggests that the current low algal diversity and abundance is strongly influenced by herbivory, although chronic effects of the discharges cannot be ruled out. Cellular changes in Enteromorpha compressa from the impacted area were characterised by abnormal granules in the cytoplasm, though these granules did not contain detectable levels of copper or other heavy metals.


Journal of Phycology | 2005

Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments

Loretto Contreras; Alejandra Moenne; Juan A. Correa

Scytosiphon lomentaria (Lingb.) Link. (Phaeophyceae) is one of the two dominant seaweeds in a coastal area of northern Chile affected by copper mine wastes, where the concentration of copper in water and algal tissues remains higher than in nonimpacted sites. Copper‐loaded plants develop oxidative stress, as demonstrated by the increased levels of reactive oxygen species and lipoperoxides. This stress was associated with 1) an enhanced activity of the antioxidant enzymes catalase, glutathione peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase and 2) an inhibition of the glutathione reductase activity. Furthermore, stressed plants showed a decrease in glutathione and phenolic compounds levels and an increase in total ascorbate. Reciprocal transplants revealed that plants rapidly adjusted their antioxidant system in response to the conditions of the receiving site. In individuals transplanted from the copper‐enriched environment to the control site, normal levels of lipoperoxides and antioxidant compounds were restored in 48 h and antioxidant enzymes recovered their basal activities in 96 h. Individuals transplanted from the control site to the copper‐enriched area adjusted their antioxidant compounds and antioxidant enzymes within 48 h and 96 h, respectively, and reached the functional status of the local plants. We conclude that S. lomentaria inhabiting the copper‐enriched area buffered oxidative stress by a simultaneous involvement of antioxidant enzymes and water‐soluble antioxidant compounds. These antioxidant responses were rapid and reversible, suggesting that copper resistance in S. lomentaria is a constitutive trait and that copper enrichment of the area did not result in a locally adapted copper‐tolerant ecotype.


Aquatic Toxicology | 2010

Proteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae)

Loretto Contreras; Alejandra Moenne; Fanny Gaillard; Philippe Potin; Juan A. Correa

A proteomic analysis combining peptide de novo sequencing and BLAST analysis was used to identify novel proteins involved in copper tolerance in the marine alga Scytosiphon gracilis (Phaeophyceae). Algal material was cultivated in seawater without copper (control) or supplemented with 100 microg L(-1) for 4 days, and protein extracts were separated by two-dimensional gel electrophoresis (2-DE). From the proteins obtained in the copper treatment, 25 over-expressed, 5 under-expressed and 5 proteins with no changes as compared with the control, were selected for sequencing. Tryptic-peptides obtained from 35 spots were analyzed by capillary liquid chromatography and tandem mass spectroscopy (capLC/MS/MS), and protein identity was determined by BLASTP. We identified 19 over-expressed proteins, including a chloroplast peroxiredoxin, a cytosolic phosphomannomutase, a cytosolic glyceraldehyde-3-phosphate dehydrogenase, 3 ABC transporters, a chaperonine, a subunit of the proteasome and a tRNA synthase, among others. The possible involvement of these over-expressed proteins in buffering oxidative stress and avoiding metal uptake in S. gracilis exposed to copper excess is discussed taking into consideration the information available for other plant models.


Journal of Applied Phycology | 2004

Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction

Nancy P. Chandía; Betty Matsuhiro; Enrique Mejías; Alejandra Moenne

Extraction of Lessonia vadosa(Laminariales, Phaeophyta) collectedin three different localities near PuntaArenas in the south of Chile, with 3%aqueous sodium carbonate solutions gave asodium alginate yield in the range3.0–17.7% dry weight. There were markeddifferences in the mannuronic acid toguluronic acid ratio (M/G) (0.21–1.69) inthe alginic acids, samples collected inPuerto del Hambre in winter were composedmainly of mannuronic acid residues. Thealginate samples were characterized bypartial hydrolysis and FT-IR spectroscopy.No relationship was found between tissuetype and polyguluronic acid content. Theelicitor activity of the polymannuronicacid enriched fraction from alginic acid ofblades from Puerto del Hambre was assayedin wheat plants. The polymannuronic acidenriched fraction induced substancialelicitation of phenylalanine ammonia-lyase(PAL) and peroxidase (POD) activities.


Plant Cell and Environment | 2010

Co‐occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess

Alberto González; Jeannette Vera; Jorge Castro; Geraldine Dennett; Macarena Mellado; Bernardo Morales; Juan A. Correa; Alejandra Moenne

In order to analyse copper-induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione-S-transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes.


Journal of Plant Growth Regulation | 2013

Seaweed Oligosaccharides Stimulate Plant Growth by Enhancing Carbon and Nitrogen Assimilation, Basal Metabolism, and Cell Division

Alberto González; Jorge Castro; Jeannette Vera; Alejandra Moenne

It is now well established that plant cell wall oligosaccharides can stimulate or inhibit growth and development in plants. In addition, it has been determined that seaweed (marine algae) cell wall polysaccharides and derived oligosaccharides can enhance growth in plants. In particular, oligo-alginates obtained by depolymerization of alginates from brown seaweeds increase growth of different plants by enhancing nitrogen assimilation and basal metabolism. Interestingly, oligo-alginates also stimulate growth of marine and fresh water green microalgae, increasing the content of fatty acids. On the other hand, oligo-carrageenans obtained by depolymerization of carrageenans from red seaweeds increase growth of tobacco plants by enhancing photosynthesis, nitrogen assimilation, basal metabolism, and cell division. In addition, oligo-carrageenans increase protection against viral, fungal, and bacterial infections in tobacco plants, which is determined, at least in part, by the accumulation of several phenylpropanoid compounds (PPCs) with antimicrobial activity. Moreover, oligo-carrageenans stimulate growth of 3-year-old Eucalyptus globulus trees by increasing photosynthesis, nitrogen assimilation, and basal metabolism. Furthermore, oligo-carrageenans induce an increase in cellulose content and in the level of essential oil and some PPCs with antimicrobial activities, suggesting that defense against pathogens may be also enhanced. Thus, seaweed oligosaccharides induce a dual beneficial effect in plants and trees, enhancing growth, which is determined by the increase in carbon and nitrogen assimilation, basal metabolism, and cell division, and defense against pathogens, which is determined by the accumulation of compounds with antimicrobial activities. In this sense, molecular mechanisms that potentially interconnect activation of plant growth and defense responses are discussed.


Plant Physiology and Biochemistry | 2012

Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta).

Macarena Mellado; Rodrigo A. Contreras; Alberto González; Geraldine Dennett; Alejandra Moenne

In order to analyze the synthesis of antioxidant and heavy metal-chelating compounds in response to copper stress, the marine alga Ulva compressa (Chlorophyta) was exposed to 10 μM copper for 7 days and treated with inhibitors of ASC synthesis, lycorine, and GSH synthesis, buthionine sulfoximine (BSO). The levels of ascorbate, in its reduced (ASC) and oxidized (DHA) forms, glutathione, in its reduced (GSH) and oxidized (GSSG) forms, and phytochelatins (PCs) were determined as well as activities of enzymes involved in ASC synthesis, L-galactose dehydrogenase (GDH) and L-galactono 1,4 lactone dehydrogenase (GLDH), and in GSH synthesis, γ-glutamylcysteine synthase (γ-GCS) and glutathione synthase (GS). The level of ASC rapidly decreased to reach a minimum at day 1 that remained low until day 7, DHA decreased until day 1 but slowly increased up to day 7 and its accumulation was inhibited by lycorine. In addition, GSH level increased to reach a maximal level at day 5 and GSSG increased up to day 7 and their accumulation was inhibited by BSO. Activities of GDH and GLDH increased until day 7 and GLDH was inhibited by lycorine. Moreover, activities of γ-GCS and GS increased until day 7 and γ-GCS was inhibited by BSO. Furthermore, PC2, PC3 and PC4, increased until day 7 and their accumulation was inhibited by BSO. Thus, copper induced the synthesis of ascorbate, glutathione and PCs in U. compressa suggesting that these compounds are involved in copper tolerance. Interestingly, U. compressa is, until now, the only ulvophyte showing ASC, GSH and PCs synthesis in response to copper excess.

Collaboration


Dive into the Alejandra Moenne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan A. Correa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Murray T. Brown

Plymouth State University

View shared research outputs
Top Co-Authors

Avatar

Silvia Saucedo

Universidad Técnica Estatal de Quevedo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Potin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrés Ritter

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Daniella Mella

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge