Alejandra V. Contreras
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandra V. Contreras.
Nature | 2012
David Reich; Nick Patterson; Desmond D. Campbell; Arti Tandon; Stéphane Mazières; Nicolas Ray; María Victoria Parra; Winston Rojas; Constanza Duque; Natalia Mesa; Luis F. García; Omar Triana; Silvia Blair; Amanda Maestre; Juan C. Dib; Claudio M. Bravi; Graciela Bailliet; Daniel Corach; Tábita Hünemeier; Maria-Cátira Bortolini; Francisco M. Salzano; Maria Luiza Petzl-Erler; Victor Acuña-Alonzo; Carlos A. Aguilar-Salinas; Samuel Canizales-Quinteros; Teresa Tusié-Luna; Laura Riba; Maricela Rodríguez-Cruz; Mardia Lopez-Alarcón; Ramón Coral-Vazquez
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call ‘First American’. However, speakers of Eskimo–Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Irma Silva-Zolezzi; Alfredo Hidalgo-Miranda; Jesús K. Estrada-Gil; Juan Carlos Fernandez-Lopez; Laura Uribe-Figueroa; Alejandra V. Contreras; Eros Balam-Ortiz; Laura del Bosque-Plata; David Velázquez-Fernández; Cesar Lara; Rodrigo Goya; Enrique Hernández-Lemus; Carlos Davila; Eduardo Barrientos; Santiago March; Gerardo Jimenez-Sanchez
Mexico is developing the basis for genomic medicine to improve healthcare of its population. The extensive study of genetic diversity and linkage disequilibrium structure of different populations has made it possible to develop tagging and imputation strategies to comprehensively analyze common genetic variation in association studies of complex diseases. We assessed the benefit of a Mexican haplotype map to improve identification of genes related to common diseases in the Mexican population. We evaluated genetic diversity, linkage disequilibrium patterns, and extent of haplotype sharing using genomewide data from Mexican Mestizos from regions with different histories of admixture and particular population dynamics. Ancestry was evaluated by including 1 Mexican Amerindian group and data from the HapMap. Our results provide evidence of genetic differences between Mexican subpopulations that should be considered in the design and analysis of association studies of complex diseases. In addition, these results support the notion that a haplotype map of the Mexican Mestizo population can reduce the number of tag SNPs required to characterize common genetic variation in this population. This is one of the first genomewide genotyping efforts of a recently admixed population in Latin America.
Science | 2014
Andres Moreno-Estrada; Christopher R. Gignoux; Juan Carlos Fernández-López; Fouad Zakharia; Martin Sikora; Alejandra V. Contreras; Victor Acuña-Alonzo; Karla Sandoval; Celeste Eng; Sandra Romero-Hidalgo; Patricia Ortiz-Tello; Victoria Robles; Eimear E. Kenny; Ismael Nuño-Arana; Rodrigo Barquera-Lozano; Gastón Macín-Pérez; Julio Granados-Arriola; Scott Huntsman; Joshua M. Galanter; Marc Via; Jean G. Ford; Rocio Chapela; William Rodriguez-Cintron; Jose R. Rodriguez-Santana; Isabelle Romieu; Juan José Luis Sienra-Monge; Blanca Estela del Río Navarro; Stephanie J. London; Andres Ruiz-Linares; Rodrigo García-Herrera
The population structure of Native Mexicans The genetics of indigenous Mexicans exhibit substantial geographical structure, some as divergent from each other as are existing populations of Europeans and Asians. By performing genome-wide analyses on Native Mexicans from differing populations, Moreno-Estrada et al. successfully recapitulated the pre-Columbian substructure of Mexico. This ancestral structure is evident among cosmopolitan Mexicans and is correlated with subcontinental origins and medically relevant aspects of lung function. These findings exemplify the importance of understanding the genetic contributions of admixed individuals. Science, this issue p. 1280 Indigenous and cosmopolitan Mexican populations are highly structured with genetic variation of medical relevance. Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between subcontinental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide.
PLOS Genetics | 2012
Joshua M. Galanter; Juan Carlos Fernández-López; Christopher R. Gignoux; Jill S. Barnholtz-Sloan; Ceres Fernandez-Rozadilla; Marc Via; Alfredo Hidalgo-Miranda; Alejandra V. Contreras; Laura Uribe Figueroa; Paola Raska; Gerardo Jimenez-Sanchez; Irma Silva Zolezzi; M.D. Torres; Clara Ruiz–Ponte; Y. Ruiz; Antonio Salas; Elizabeth A. Nguyen; Celeste Eng; Lisbeth Borjas; William Zabala; Guillermo Barreto; Fernando Rondóo González; A. Ibarra; Patricia Taboada; L. Porras; Fabián Moreno; Abigail W. Bigham; Gerardo Gutiérrez; Tom D. Brutsaert; Fabiola León-Velarde
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2>0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.
Advances in Nutrition | 2013
Alejandra V. Contreras; Nimbe Torres; Armando R. Tovar
Peroxisome proliferator-activated receptors (PPARs) are transcription factors that belong to the superfamily of nuclear hormone receptors and regulate the expression of several genes involved in metabolic processes that are potentially linked to the development of some diseases such as hyperlipidemia, diabetes, and obesity. One type of PPAR, PPAR-α, is a transcription factor that regulates the metabolism of lipids, carbohydrates, and amino acids and is activated by ligands such as polyunsaturated fatty acids and drugs used to treat dyslipidemias. There is evidence that genetic variants within the PPARα gene have been associated with a risk of the development of dyslipidemia and cardiovascular disease by influencing fasting and postprandial lipid concentrations; the gene variants have also been associated with an acceleration of the progression of type 2 diabetes. The interactions between genetic PPARα variants and the response to dietary factors will help to identify individuals or populations who can benefit from specific dietary recommendations. Interestingly, certain nutritional conditions, such as the prolonged consumption of a protein-restricted diet, can produce long-lasting effects on PPARα gene expression through modifications in the methylation of a specific locus surrounding the PPARα gene. Thus, this review underlines our current knowledge about the important role of PPAR-α as a mediator of the metabolic response to nutritional and environmental factors.
PLOS ONE | 2014
Vania Bonifaz-Peña; Alejandra V. Contreras; Claudio J. Struchiner; Rosimeire Aparecida Roela; Tatiane K. Furuya-Mazzotti; Roger Chammas; Claudia Rangel-Escareño; Laura Uribe-Figueroa; María José Gómez-Vázquez; Howard L. McLeod; Alfredo Hidalgo-Miranda; Esteban J. Parra; Juan Carlos Fernández-López; Guilherme Suarez-Kurtz
Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level.
Pharmacogenomics | 2011
Alejandra V. Contreras; Tulia Monge-Cazares; Luis Alfaro-Ruiz; Salvador Hernández-Morales; Haydee Miranda-Ortiz; Karol Carrillo-Sanchez; Gerardo Jimenez-Sanchez; Irma Silva-Zolezzi
AIM The CYP2D6 enzyme participates in the metabolism of commonly prescribed drugs: antidepressants, antipsychotics and antihypertensives. The CYP2D6 gene shows a high degree of interindividual and interethnic variability that influences its expression and function. Mexican Mestizos are a recently admixed population resulting from the combination of Amerindian, European and, to a lesser extent, African populations. This study aimed to comprehensively characterize the CYP2D6 gene in Mexican Mestizos. MATERIALS & METHODS We performed linkage disequilibrium and network analyses in resequencing data of 96 individuals from two regions within Mexico with a different history of admixture and particular population dynamics, the Northwestern state of Sonora and the Central-Pacific state of Guerrero. RESULTS & CONCLUSION We identified 64 polymorphisms, including 14 novel variants: 13 SNPs and a CYP2D7 exon 2 conversion, that was assigned CYP2D6*82 by the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Three novel SNPs were predicted to have functional effects. For CYP2D6*82 we hypothesize an Amerindian origin that is supported by its identification in three Mexican Amerindian groups (Mayas, Tepehuanos and Mixtecos). Frequencies of CYP2D6*1, *2, *4, *5, *10, *29, *53, *82 and its duplications were 50.0, 25.5, 14.1, 2.0, 2.6, 1.0, 0.5, 2.1 and 3.6%, respectively. We found significant frequency differences in CYP2D6*1 and *2 between Mexican Mestizos and in CYP2D6*1, *2, *4, *5, *10 and *29 between Mexicans and at least one other population. We observed strong linkage disequilibrium and phylogenetic relationships between haplotypes. To our knowledge, this study is the first comprehensive resequencing analysis of CYP2D6 in Mexicans or any other Latin American population, providing information about genetic diversity relevant in the development of pharmacogenomics in this region.
Public Health Nutrition | 2017
Amada Flores; Mario Flores; Nayeli Macias; Lucía Hernández-Barrera; Marta Rivera; Alejandra V. Contreras; Salvador Villalpando
OBJECTIVE To assess vitamin D dietary sources, intake and 25-hydroxyvitamin D status and their association with individual and sociodemographic characteristics in Mexican children. DESIGN Data obtained from 2695 children aged 1-11 years from the Mexican National Health and Nutrition Survey (2012) were analysed. Diet was assessed by a 141-item FFQ. 25-Hydroxyvitamin D was measured by a chemiluminescent assay. RESULTS Mean vitamin D intake was 3·38 (se 0·09) µg/d (135·2 (se 3·6) IU/d) among pre-school children and 2·85 (se 0·06) µg/d (114·0 (se 2·4) IU/d) in school-age children. Milk accounted for 64·4 % of vitamin D intake in pre-school children and 54·7 % in school-age children. Vitamin D deficiency (serum 25-hydroxyvitamin D<50 nmol/l) was 25·9 % in pre-schoolers and 36·6 % in school-age children. Overweight/obese school-age children had a higher risk of vitamin D deficiency compared with normal-weight children (OR=2·23; 95 % CI 1·36, 3·66; P<0·05). CONCLUSIONS Vitamin D intakes are low in Mexican children, and milk is the main source of the vitamin. Vitamin D deficiency is common and associated with overweight in school-age children.
Journal of Nutrition | 2013
Gabriela Alemán; Victor Ortiz; Alejandra V. Contreras; Gabriela Quiroz; Guillermo Ordaz-Nava; Elizabeth Langley; Nimbe Torres; Armando R. Tovar
Body nitrogen retention is dependent on the amount of dietary protein consumed, as well as the fat and carbohydrate content in the diet, due to the modulation of amino acid oxidation. PPARα is a transcription factor involved in the upregulation of the expression of enzymes of fatty acid oxidation. However, the role of putative PPARα response elements (PPREs) in the promoter of several amino acid-degrading enzymes (AADEs) is not known. The aim of this work was to study the effect of the synthetic ligand Wy 14643 and the natural ligands palmitate, oleate, and linoleate in rats fed graded concentrations of dietary protein (6, 20, or 50 g/100 g of total diet) on the expression of the AADEs histidase, serine dehydratase, and tyrosine aminotransferase. Thus, we fed male Wistar rats diets containing 6, 20, or 50% casein for 10 d. The results showed that addition of Wy 14643 to the diet significantly reduced the expression of the AADEs. Furthermore, the incubation of hepatocytes with natural ligands of PPARα or feeding rats with diets containing soybean oil, safflower oil, lard, or coconut oil as sources of dietary fat significantly repressed the expression of the AADEs. Gene reporter assays and mobility shift assays demonstrated that the PPRE located at -482 bp of the histidase gene actively bound PPARα in rat hepatocytes. These data indicate that PPARα ligands may reduce amino acid catabolism in rats.
Biodemography and Social Biology | 2016
Blanca Zoila González-Sobrino; Ana P. Pintado-Cortina; Leticia Sebastián-Medina; Fabiola Morales-Mandujano; Alejandra V. Contreras; Yasnaya E. Aguilar; Juan Chávez-Benavides; Aurelio Carrillo-Rodríguez; Irma Silva-Zolezzi; Luis Medrano-González
Aside from the admixture between indigenous people and people from overseas, populations in Mexico changed drastically after the Spanish conquest of the sixteenth century, forming an intricate history that has been underutilized in understanding the genetic population structure of Mexicans. To infer historical processes of isolation, dispersal, and assimilation, we examined the phylogeography of mitochondrial (mt) DNA and Y-chromosome lineages in 3,026 individuals from 10 urban and nine indigenous populations by identifying single nucleotide polymorphisms. A geographic array with a predominance of Amerindian lineages was observed for mtDNA, with northern indigenous populations being divergent from the central and southern indigenous populations; urban populations showed low differentiation with isolation by distance. Y-chromosome variation distinguished urban and indigenous populations through the Amerindian haplogroup Q frequency. The MtDNA and the Y-chromosome together primarily distinguished urban and indigenous populations, with different geographic arrays for both. Gene flow across geographical distance and between the urban and indigenous realms appears to have altered the pre-Hispanic phylogeography in central and southern Mexico, mainly by displacement of women, while maintaining the indigenous isolation in the north, southeast, and Zapotec regions. Most Amerindian mtDNA diversity currently occurs in urban populations and appears to be reduced among indigenous people.